مدل بندی داده های تابعی با رویکرد رگرسیون مولفه اصلی بر اساس معیار اعتبار سنجی متقابل تعمیم یافته
Publish place: Iranian Statistical Society، Vol: 27، Issue: 2
Publish Year: 1401
Type: Journal paper
Language: Persian
View: 239
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_ISS-27-2_005
Index date: 20 May 2023
مدل بندی داده های تابعی با رویکرد رگرسیون مولفه اصلی بر اساس معیار اعتبار سنجی متقابل تعمیم یافته abstract
تحلیل داده های تابعی برای توسعه رویکردهای آماری در داده هایی مورد استفاده قرار می گیرد که دارای ماهیت تابعی و پیوسته هستند و چون این توابع به فضاهای با بعد بی نهایت تعلق دارند، استفاده از روش های متداول در آمار کلاسیک برای تحلیل آن ها، با چالش روبرو است.
مشهورترین تکنیک تحلیل داده های آماری، رویکرد مولفه های اصلی تابعی می باشد که ابزاری مهم برای کاهش بعد است،
در این مقاله با استفاده از روش
رگرسیون مولفه اصلی تابعی براساس جریمه مشتق دوم، ریج و لاسو
به تحلیل داده های تابعی آب و هوای کانادا و داده های تابعی طیف سنج پرداخته خواهد شد. بدین منظور برای تعیین مقدار بهینه پارامتر جریمه در روش های مورد استفاده از اعتبار سنجی متقابل تعمیم یافته، که معیاری معتبر و کارآمد است، استفاده می گردد.
مدل بندی داده های تابعی با رویکرد رگرسیون مولفه اصلی بر اساس معیار اعتبار سنجی متقابل تعمیم یافته Keywords:
Functional Data Analysis , Functional Regression , Generalized Cross Validation , Principal Component Regression. , اعتبار سنجی متﻘابل تعمیم یافته , رگرسیون تابعی , رگرسیون مولفه اصلی , تحلیل داده های تابعی.
مدل بندی داده های تابعی با رویکرد رگرسیون مولفه اصلی بر اساس معیار اعتبار سنجی متقابل تعمیم یافته authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :