تصحیح روش یادگیری آمیخته تقویت شده با استفاده از آزمون وونگ و کاربرد آن در مدل آمیخته گاما
Publish place: Iranian Statistical Society، Vol: 27، Issue: 2
Publish Year: 1401
Type: Journal paper
Language: Persian
View: 255
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_ISS-27-2_003
Index date: 20 May 2023
تصحیح روش یادگیری آمیخته تقویت شده با استفاده از آزمون وونگ و کاربرد آن در مدل آمیخته گاما abstract
روش یادگیری آمیخته تقویت شده (BML)، روشی فزاینده برای یادگیری مدل های آمیخته در مسئله طبقه بندی است. در هر مرحله از روش یادگیری آمیخته تقویت شده، مولفه جدیدی با توجه به یک تابع هدف در جهت به حداکثر رساندن تابع هدف به مدل آمیخته اضافه می شود. از جمله توابع هدف مورد استفاده در این روش، تابع درستنمایی و به طور معادل معیارهای اطلاع هستند. در این روش مولفه جدیدی به مدل آمیخته اضافه می شود که باعث بیشترین افزایش تابع درستنمایی شود.
چون تابع درستنمایی و معیارهای اطلاع توانایی تشخیص مدل های معادل را ندارد، بنابراین ممکن است مدل آمیخته جدید و مدل آمیخته فعلی معادل باشند و اضافه کردن مولفه جدید به مدل آمیخته فعلی باعث بهبود مدل نشود. در این مقاله روش یادگیری آمیخته تقویت شده با استفاده از آزمون انتخاب مدل وونگ که توانایی تشخیص مدل های معادل را دارد، تصحیح شده است. همچنین عملکرد دو روش یادگیری با استفاده از داده های شبیه سازی و مجموعه داده های واردات کالای ایالات متحده توسط گمرک ارزیابی شده است.
تصحیح روش یادگیری آمیخته تقویت شده با استفاده از آزمون وونگ و کاربرد آن در مدل آمیخته گاما Keywords:
Boosted algorithm , Model selection , Maximum likelihood estimator , Mixture model , Machine learning , الگوریتم تقویت کننده , انتخاب مدل , برآوردگر درستنمایی ماکسیمم , مدل آمیخته , یادگیری ماشین
تصحیح روش یادگیری آمیخته تقویت شده با استفاده از آزمون وونگ و کاربرد آن در مدل آمیخته گاما authors
صدیقه زمانی مهریان
Department of Statistics, Imam Khomeini International University, Qazvin, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :