Artificial Neural Network Modeling as an Approach to Limestone Blast Production Rate Prediction: a Comparison of PI-BANN and MVR Models

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 177

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMAE-14-2_001

تاریخ نمایه سازی: 28 خرداد 1402

Abstract:

Rock blast production rate (BPR) is one of the most crucial factors in the evaluation of mine project's performance. In order to improve the production of a limestone mine, the blast design parameters and image analysis results are used in this work to evaluate the BPR. Additionally, the effect of rock strength on BPR is determined using the blast result collected. In order to model BPR prediction using artificial neural networks (ANNs) and multivariate prediction techniques, a total of ۲۱۹ datasets with ۸ blasting influential parameters from limestone mine blasting in India are collected. To obtain a high-accuracy model, a new training process called the permutation important-based Bayesian (PI-BANN) training approach is proposed in this work. The developed models are validated with new ۲۰ blast rounds, and evaluated with two model performance indices. The validation result shows that the two model results agree well with the BPR practical records. Additionally, compared to the MVR model, the proposed PI-BANN model in this work provides a more accurate result. Based on the controllable parameters, the two models can be used to predict BPR in a variety of rock excavation techniques. The study result reveals that rock strength variation affects both the blast outcome (BPR) and the quantity of explosives used in each blast round.

Authors

Blessing Taiwo

Department of Mining Engineering, Federal University of Technology, Akure, Nigeria

Gebretsadik Angesom

Department of Mining Engineering, Aksum University, Aksum, Tigray, Ethiopia

Yewuhalashet Fissha

Department of Mining Engineering, Aksum University, Aksum, Tigray, Ethiopia

Yemane Kide

Department of Mining Engineering, Aksum University, Aksum, Tigray, Ethiopia

Enming Li

School of Resources and Safety Engineering, Central South University, Changsha, China

Kiross Haile

Ethiopian Ministry of Mines, Mineral Industry Development Institute, Addis Ababa, Ethiopia

Oluwaseun Oni

Department of Mining Engineering, Federal University of Technology, Akure, Nigeria

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :