A survey on air pollutant PM۲.۵ prediction using random forest model

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 108

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_EHEM-10-2_009

تاریخ نمایه سازی: 30 خرداد 1402

Abstract:

Background: One of the most critical contributors to air pollution is particulate matter (PM۲.۵) that its acute or chronic exposure causes serious health effects to human. Accurate forecasting of PM۲.۵ concentration is essential for air pollution control and prevention of health complications. A survey of the available scientific literature on random forest model for PM۲.۵ prediction is presented here. Methods: The scientific literature is extracted from Science Direct database based on a set of specified search criteria. The input features, data length, and evaluation parameters used in PM۲.۵ prediction were analyzed in this study. Results: The study shows that majority of the publications are aimed at the daily prediction of outdoor PM۲.۵. Most publications base their PM۲.۵ prediction on features aerosol optical depth (AOD) and boundary layer height (BLH). PM۱۰ and NO۲ are the main air pollutants employed in the PM۲.۵ estimation. Majority studies utilized input data lengths covering more than one year, and the effectiveness of prediction models are unaffected by the length of investigation. The coefficient of determination, R۲, is the primary evaluation parameter used in all publications. The majority of research study indicated R۲ values greater than ۰.۸۵, demonstrating the reasonable dependability and efficiency of random forest regression-based PM۲.۵ prediction models. Conclusion: The study demonstrates that the publications use a variety of meteorological and geological features for PM۲.۵ estimation, depending on the context of the research as well as data accessibility. The findings demonstrate that it is hard to pinpoint the optimal model in any particular way.

Authors

Sherin Babu

Corresponding author: Department of Computer Science, Assumption College Autonomous, Changanacherry, Kottayam, Kerala, India

Binu Thomas

School of Computer Sciences, Mahatma Gandhi University, Kottayam, Kerala, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • World Health Organization (WHO). ۹ Out of ۱۰ People Worldwide ...
  • Amarloei A, Fazlzadeh M, Jonidi Jafari A, Zarei A, Mazloomi ...
  • Yunesian M, Rostami R, Zarei A, Fazlzadeh M, Janjani H. ...
  • Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, ...
  • Elsunousi AAM, Sevik H, Cetin M, Ozel HB, Ozel HU. ...
  • Xing YF, Xu YH, Shi MH, Lian YX. The impact ...
  • Yin P, Guo J, Wang L, Fan W, Lu F, ...
  • Bose S, Hansel NN, Tonorezos ES, Williams DL, Bilderback A, ...
  • Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants ...
  • Sajjadi SA, Atarodi Z, Lotfi AH, Zarei A. Levels of ...
  • Lippmann M, Ito K, Nádas A, Burnett RT. Association of ...
  • Yang Y, Guo Y, Qian ZM, Ruan Z, Zheng Y, ...
  • Maher BA, Ahmed IA, Karloukovski V, MacLaren DA, Foulds PG, ...
  • Shi L, Zanobetti A, Kloog I, Coull BA, Koutrakis P, ...
  • Burnett RT, Pope CA ۳rd, Ezzati M, Olives C, Lim ...
  • Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, ...
  • Bartell SM, Longhurst J, Tjoa T, Sioutas C, Delfino RJ. ...
  • Madrigano J, Kloog I, Goldberg R, Coull BA, Mittleman MA, ...
  • Gakidou E, Afshin A, Abajobir AA, Abate KH, Abbafati C, ...
  • van Klompenburg T, Kassahun A, Catal C. Crop yield prediction ...
  • Sarker IH. Machine learning: algorithms, real-world applications and research directions. ...
  • Janiesch C, Zschech P, Heinrich K. Machine learning and deep ...
  • Zhong S, Zhang K, Bagheri M, Burken JG, Gu A, ...
  • Shezi B, Jafta N, Sartorius B, Naidoo RN. Developing a ...
  • Yuchi W, Gombojav E, Boldbaatar B, Galsuren J, Enkhmaa S, ...
  • Breiman L. Random forests. Mach Learn. ۲۰۰۱;۴۵(۱):۵-۳۲. doi: ۱۰.۱۰۲۳/a:۱۰۱۰۹۳۳۴۰۴۳۲۴ ...
  • Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random ...
  • Brokamp C, Jandarov R, Rao MB, LeMasters G, Ryan P. ...
  • James G, Witten D, Hastie T, Tibshirani R. Tree-based methods. ...
  • Rakhra M, Soniya P, Tanwar D, Singh P, Bordoloi D, ...
  • Hu X, Belle JH, Meng X, Wildani A, Waller LA, ...
  • Brokamp C, Jandarov R, Hossain M, Ryan P. Predicting daily ...
  • Grömping U. Variable importance assessment in regression: linear regression versus ...
  • Huang K, Xiao Q, Meng X, Geng G, Wang Y, ...
  • Dudek G. Short-term load forecasting using random forests. In: Filev ...
  • Bai K, Li K, Chang NB, Gao W. Advancing the ...
  • Bi J, Belle JH, Wang Y, Lyapustin AI, Wildani A, ...
  • Di Q, Amini H, Shi L, Kloog I, Silvern R, ...
  • Li X, Zhang X. Predicting ground-level PM۲.۵ concentrations in the ...
  • Nabavi SO, Haimberger L, Abbasi E. Assessing PM۲.۵ concentrations in ...
  • Stafoggia M, Bellander T, Bucci S, Davoli M, de Hoogh ...
  • Tang D, Liu D, Tang Y, Seyler BC, Deng X, ...
  • Wei J, Huang W, Li Z, Xue W, Peng Y, ...
  • نمایش کامل مراجع