Optimum design of a micro-positioning compliant mechanism based on neural network metamodeling
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 262
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JCAM-54-2_005
تاریخ نمایه سازی: 7 تیر 1402
Abstract:
This paper presents a comprehensive investigation of the optimization process of a compliant nano-positioning mechanism based on a high-accuracy metamodel. Within this study, analytical approach, finite element analysis (FEA), and deep neural network (DNN) are integrated in order to achieve the optimum design of a parallel ۲-degree-of-freedom compliant positioner while taking a broad range of factors into account. First, a linear regression analysis is performed on the primary finite element model as a sensitivity analysis. Then an analytical model is established to express one of the objective functions of design, namely the mechanism working range, as a function of characteristic features: the mechanism stiffness and displacement amplification ratio (λ). In the optimization procedure, a single objective constrained particle swarm optimization (SOCPSO) algorithm acts on the metamodel to maximize the resonant frequency and provide the minimum acceptable working range. The proposed optimization guideline is established for seven different desired working ranges and succeeded in predicting the objective function with an error of less than ۳%. The findings provide insights into the design and geometric optimization of the mechanical structures. Furthermore, it will be employed as a guideline for implementing DNN for metamodeling in other engineering problems.
Keywords:
Compliant mechanism , Finite Element Analysis (FEA) , Metamodel , Deep Neural Networks (DNN) , Single-Objective Constrained Particle Swarm Optimization (SOCPSO) algorithm
Authors
Erfan Norouzi Farahani
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Niloofar Ramroodi
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Maryam Mahnama
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :