سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Applications of q-Homotopy analysis with Laplace Transform and Pade´ approximate method for Solving Magneto Hydrodynamic boundary-layer equations.

Publish Year: 1402
Type: Journal paper
Language: English
View: 256

This Paper With 15 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JCAM-54-2_003

Index date: 28 June 2023

Applications of q-Homotopy analysis with Laplace Transform and Pade´ approximate method for Solving Magneto Hydrodynamic boundary-layer equations. abstract

In this paper, we propose a new technique for solving the magnetic hydrodynamic boundary layer equations after converting them to a nonlinear ordinary differential equation using the appropriate similarity transformation. This technique is based on a combination of the q-homotopy analysis method, the Laplace transform, and the Pade´ approximation, named (q-HALPM). To ensure the method's efficiency, we compared the results of q-HALPM with the ones obtained by methods (DTM-Pade´) and M-HPM . Additionally, the effect of the magnetic parameter on the velocity and heat transfer was studied. The results confirm that the new method has high accuracy and efficiency in finding the approximate analytical solution for the current problem. Moreover, the graphs of the new solutions show the validity and usefulness of the proposed method.

Applications of q-Homotopy analysis with Laplace Transform and Pade´ approximate method for Solving Magneto Hydrodynamic boundary-layer equations. Keywords:

Applications of q-Homotopy analysis with Laplace Transform and Pade´ approximate method for Solving Magneto Hydrodynamic boundary-layer equations. authors

Maysoon Hasan

Department of Mathematics; College of Education for Pure Science; Basrah University, Basrah, Iraq.

Abdul-Sattar J. Ali Al-Saif

Department of Mathematics; College of Education for Pure Science; Basrah University, Basrah, Iraq.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
H. Shahmohamadi, Reliable treatment of a new analytical method for ...
M. Sajid, T. Hayat, The application of homotopy analysis method ...
M. Sajid, T. Javed, T. Hayat, MHD rotating flow of ...
A. Jasim, New Analytical Study of Non-Newtonian Jeffery Hamel Flow ...
Z. Hammouch, T. Mekkaoui, H. Sadki, Homotopy analysis method for ...
M. Semary, H. Hassan, An Effective Approach for solving MHD ...
D. domiri ganji, Homotopy Perturbation Combined with Pad'e Approximation for ...
E. Momoniat, B. Rostami, Analytic Approximate Solutions for MHD Boundary-Layer ...
R. Ene, V. Marinca, Approximate solutions for steady boundary layer ...
K. Jabeen, M. Mushtaq, R. Akram, A comparative study of ...
J. Zhu, L. C. Zheng, The Approximate Analytical Solution of ...
A. M. Jasim, Analytical approximation of the first grade MHD ...
Y. Khan, N. Faraz, Application of modified Laplace decomposition method ...
A. Abbas, M. Begum Jeelani Shaikh, N. Alharthi, Darcy–Forchheimer Relation ...
M. Parida, S. Padhy, Numerical study of MHD flow of ...
M. M. Rashidi, The modified differential transform method for solving ...
M. Fathizadeh, M. Madani, Y. Khan, N. Faraz, A. Yıldırım, ...
V. B. Awati, N. M. Kumar, K. B. Chavaraddi, Dirichlet ...
E. M. Abo-Eldahab, R. Adel, H. M. Mobarak, M. Abdelhakem, ...
S. N. Huseen, Solving the K (۲, ۲) Equation by ...
W. Bo, Q. Youhua, Padé Approximation Based on Orthogonal Polynomial, ...
نمایش کامل مراجع