Fitted scheme for singularly perturbed time delay reaction-diffusion problems

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 87

This Paper With 23 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAO-13-2_007

تاریخ نمایه سازی: 12 تیر 1402

Abstract:

In this article, we constructed a numerical scheme for singularly perturbed time-delay reaction-diffusion problems. For the discretization of the time derivative, we used the Crank-Nicolson method and a hybrid scheme, which is a combination of the fourth-order compact difference scheme and the cen-tral difference scheme on a special type of Shishkin mesh in the spatial di-rection. The proposed scheme is shown to be second-order accurate in time and fourth-order accurate with a logarithmic factor in space. The uniform convergence of the proposed scheme is discussed. Numerical investigations are carried out to demonstrate the efficacy and uniform convergence of the proposed scheme, and the obtained numerical results reveal the better per-formance of the present scheme, as compared with some existing methods in the literature.

Authors

M. Amsalu Ayele

Department of Mathematics, College of Sciences, Bahir Dar University, Bahir Dar, Ethiopia.

A. Andargie Tiruneh

Department of Mathematics, College of Sciences, Bahir Dar University, Bahir Dar, Ethiopia.

G. Adamu Derese

Department of Mathematics, College of Sciences, Bahir Dar University, Bahir Dar, Ethiopia.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ansari, A., Bakr, S. and Shishkin, G. A parameter-robust finite ...
  • Babu, G. and Bansal, K. A high order robust numerical ...
  • Clavero, C. and Gracia, J.L. High order methods for elliptic ...
  • Clavero, C. and Gracia, J.L. On the uniform convergence of ...
  • Clavero, C. and Gracia, J.L. A high order hodie finite ...
  • Clavero, C., Gracia, J. and Jorge, J. High-order numerical methods ...
  • Gelu, F.W. and Duressa, G.F. A uniformly convergent collocation method ...
  • Govindarao, L. and Mohapatra, J. A second order numerical method ...
  • Govindarao, L., Mohapatra, J. and Das, A. A fourth-order numerical ...
  • Govindarao, L. and Mohapatra, J. Numerical analysis and simulation of ...
  • Kadalbajoo, M.K. and Awasthi, A. Crank–nicolson finite difference method based ...
  • Kumar, P.M.M. and Kanth, A.R. Computational study for a class ...
  • Kumar, S. and Kumar, M. High order parameter-uniform discretization for ...
  • Kumar, M. and Rao, S.C.S. High order parameter-robust numerical methodfor ...
  • Longtin, A. and Milton, J.G. Complex oscillations in the human ...
  • Mackey, M.C. and Glass, L. Oscillation and chaos in physiological ...
  • Mallet-Paret, J. and Nussbaum, R.D. A differential-delay equation aris-ing in ...
  • Miller, J. ORiordan, E. and Shishkin, G. Fitted numerical methods ...
  • Mohapatra, J. and Govindarao, L. A fourth order optimal numerical ...
  • Negero, N.T. and Duressa, G.F. Uniform convergent solution of singu-larly ...
  • Priyadarshana, S., Mohapatra, J. and Govindrao, L. An efficient uni-formly ...
  • Priyadarshana, S., Mohapatra, J. and Pattanaik, S.R.Parameter uni-form optimal order ...
  • Sahu, S.R. and Mohapatra, J. Numerical investigation of time delay ...
  • Salama, A. and Al-Amery, D. Asymptotic-numerical method for singu-larly perturbed ...
  • Salama, A. and Al-Amery, D. A higher order uniformly convergent ...
  • Vulanović, R. A higher-order scheme for quasilinear boundary value prob-lems ...
  • Wazewska-Czyzewska, M. and Lasota, A. Mathematical models of the red ...
  • Yadav, S. and Rai, P. A higher order scheme for ...
  • نمایش کامل مراجع