افزایش داده و انتخاب موثر ویژگی در شبکه های مولد متخاصمی جهت تشخیص احساس از گفتار
Publish place: Journal Of Modeling in Engineering، Vol: 21، Issue: 72
Publish Year: 1402
Type: Journal paper
Language: Persian
View: 168
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JME-21-72_001
Index date: 5 July 2023
افزایش داده و انتخاب موثر ویژگی در شبکه های مولد متخاصمی جهت تشخیص احساس از گفتار abstract
تا کنون، یقینی مبتنی بر موفقیت و یا عدم موفقیت به کارگیری روش های کاهش ویژگی جهت افزایش کارایی سیستم های تشخیص احساس از گفتار حاصل نشده است. این مقاله باهدف افزایش داده ها در یک سیستم تشخیص احساس از گفتار، انتخاب ویژگی را موردبحث و بررسی قرار می دهد. آزمایش ها بر روی چهار پایگاه داده متداول EMO-DB، eNTERFACE۰۵، SAVEE و IEMOCAP در نرم افزار پایتون انجام گردیده و علاوه بر این، تجزیه وتحلیل داده ها بر روی هر چهار پایگاه داده برای چهار احساس غم، عصبانیت، خوشحالی و خنثی ارائه خواهد شد. یک شبکه افزایش داده متخاصمی جهت افزایش نمونه ها و دو شبکه انتخاب ویژگی ترکیبی معیار فیشر و الگوریتم جداساز خطی طی دو مرحله و با فیدبکی که از شبکه طبقه بند گرفته می شود سیستم تشخیص احساس از گفتار را به نقطه بهینه ای از تعداد و ابعاد داده ها رسانیده و نشان می دهد آنالیز مولفه های اصلی روی داده های همبسته موثرتر و الگوریتم جداساز خطی روی داده های با بعد کم بهتر عمل می کنند. همچنان که روش فیشر در کاهش سایز بهتر از آنالیز مولفه های اصلی عمل می کند. همچنین ماشین بردار پشتیبان جهت طبقه بندی احساسات مورداستفاده قرار گرفته است. نتایج نشان می دهد که استفاده از هر دو روش جداساز خطی و معیار فیشر به طور هم زمان در سیستم افزایش داده متخاصمی می تواند ویژگی ها را در ابعاد کمتر فیلتر نموده درحالی که اطلاعات احساسی را جهت طبقه بندی حفظ نماید. نتایج به دست آمده با تحقیقات اخیر انجام شده مقایسه و روش پیشنهادی توانست به صحت ۸۶.۳۲% در پایگاه داده برلین دست یابد.
افزایش داده و انتخاب موثر ویژگی در شبکه های مولد متخاصمی جهت تشخیص احساس از گفتار Keywords:
افزایش داده و انتخاب موثر ویژگی در شبکه های مولد متخاصمی جهت تشخیص احساس از گفتار authors
آرش شیلاندری
دانشکده مهندسی برق - دانشگاه صنعتی شاهرود - شاهرود - ایران
حسین مروی
دانشکده مهندسی برق - دانشگاه صنعتی شاهرود - شاهرود - ایران
حسین خسروی
گروه الکترونیک، دانشکده مهندسی برق، دانشگاه صنعتی شاهرود، شاهرود، ایران
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :