A Hybrid Model for Back-Break Prediction using XGBoost Machine learning and Metaheuristic Algorithms in Chadormalu Iron Mine
Publish place: Journal of Mining and Environment، Vol: 14، Issue: 2
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 139
This Paper With 24 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-14-2_019
تاریخ نمایه سازی: 27 تیر 1402
Abstract:
Back-break is one of the adverse effects of blasting, which results in unstable mine walls, high duration, falling machinery, and inappropriate fragmentation. Thus, the economic benefits of the mine are reduced, and safety is severely affected. Back-break can be influenced by various parameters such as rock mass properties, blast geometry, and explosive properties. Therefore, during the blasting process, back-break must be accurately predicted, and other production activities must be done to prevent and reduce its adverse effects. In this regard, a hybrid model of extreme gradient boosting (XGB) is proposed for predicting back-break using gray wolf optimization (GWO) and particle swarm optimization (PSO). Additionally, validation of the hybrid model is conducted using XGBoost, gene expression programming (GEP), random forest (RF), linear multiple regression (LMR), and non-linear multiple regression (NLMR) methods. For this purpose, the data obtained from ۹۰ blasting operations in the Chadormalu iron ore mine are collected by considering the parameters of the blast pattern design. According to the results obtained, the performance and accuracy level of hybrid models including GWO-XGB (R۲ = ۹۹, RMSE = ۰.۰۱, MAE = ۰.۰۰۱, VAF = ۰.۹۹, a-۲۰ = ۰.۹۸), and PSO-XGB (۹۹, ۰.۰۱, ۰.۰۰۱, ۰.۹۹, ۰.۹۸) are better than the XGBoost (۹۷, ۰.۱۸۵, ۰.۱۳۲, ۰.۹۸, ۹۵), GEP (۹۶, ۰.۲۳۳, ۰.۱۸۶, ۰.۹۶۷, ۰.۹۳۵), RF (۹۷, ۰.۲۱۰, ۰.۱۵۶, ۰.۹۷, ۰.۹۴), LMR (۹۶, ۰.۲۳۵, ۰.۱۸۱, ۰.۹۶۴, ۰.۹۲), and NLMR (۹۶, ۰.۲۲۹, ۰.۱۷۷, ۰.۹۶۸, ۰.۹۳) models. Notably, the GWO-XGB hybrid model has superior overall performance as compared to the PSO-XGB model. Based on the sensitivity analysis results, hole depth and stemming are the essential effective parameters for back-break.
Keywords:
backbreak , extreme gradient boosting (XGB) , Particle swarm optimization (PSO) , gray wolf optimization (GWO) , Chadormalu iron mine
Authors
Zohreh Nabavi
Department of Mining Engineering, Facullty of Engineering, Tarbiat Modares University, Tehran, Iran
Mohammad Mirzehi
Department of Mining Engineering, Facullty of Engineering, Tarbiat Modares University, Tehran, Iran
Hesam Dehghani
Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
Pedram Ashtari
Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :