Development of Vision-Based Human Tracking for Drone’s Gimbal
Publish Year: 1401
Type: Journal paper
Language: English
View: 125
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JASTI-15-1_006
Index date: 30 July 2023
Development of Vision-Based Human Tracking for Drone’s Gimbal abstract
The use of Unmanned Aerial Vehicles (UAVs) with different features and for a variety of applications has grown significantly. Tracking generic targets, especially human, using the UAV's camera is one of the most active and demanding fields in this area. In this paper we implement two vision-based tracking algorithms to track a human by using a 2D gimbal which can be mounted on UAVs. To ensure smooth movements and reduce the effect of common jumps on the trackers output, the gimbal motion control system is equipped with a Kalman filter followed by a proportional-derivative (PD) controller. Various experimental tests have been designed and implemented to track a human. The evaluation results show success in tracking the high speed movements with one of the algorithms and high accuracy in tracking the challenging movements in the other algorithm. Also in both methods, the tracking computation time is short enough and suitable for real-time implementation. The favorable performance of both algorithms indicate the ability of designed system to be implemented on the UAVs for practical applications.
Development of Vision-Based Human Tracking for Drone’s Gimbal Keywords:
Development of Vision-Based Human Tracking for Drone’s Gimbal authors
Mohammad Hossein Bayat
Faculty of New Sciences and Technologies
Mohammad Shahbazi
Manufacturing engineering, School of Mechanical engineering, Iran University of Science and Technology
Bahram Tarvirdizadeh
Faculty of New Sciences and Technologies
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :