سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Development of Vision-Based Human Tracking for Drone’s Gimbal

Publish Year: 1401
Type: Journal paper
Language: English
View: 125

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JASTI-15-1_006

Index date: 30 July 2023

Development of Vision-Based Human Tracking for Drone’s Gimbal abstract

The use of Unmanned Aerial Vehicles (UAVs) with different features and for a variety of applications has grown significantly. Tracking generic targets, especially human, using the UAV's camera is one of the most active and demanding fields in this area. In this paper we implement two vision-based tracking algorithms to track a human by using a 2D gimbal which can be mounted on UAVs. To ensure smooth movements and reduce the effect of common jumps on the trackers output, the gimbal motion control system is equipped with a Kalman filter followed by a proportional-derivative (PD) controller. Various experimental tests have been designed and implemented to track a human. The evaluation results show success in tracking the high speed movements with one of the algorithms and high accuracy in tracking the challenging movements in the other algorithm. Also in both methods, the tracking computation time is short enough and suitable for real-time implementation. The favorable performance of both algorithms indicate the ability of designed system to be implemented on the UAVs for practical applications.

Development of Vision-Based Human Tracking for Drone’s Gimbal Keywords:

Development of Vision-Based Human Tracking for Drone’s Gimbal authors

Mohammad Hossein Bayat

Faculty of New Sciences and Technologies

Mohammad Shahbazi

Manufacturing engineering, School of Mechanical engineering, Iran University of Science and Technology

Bahram Tarvirdizadeh

Faculty of New Sciences and Technologies

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
C. H. Lin, F. Y. Hsiao, and F. Bin Hsiao, ...
V. N. Dobrokhodov, I. I. Kaminer, K. D. Jones, and ...
Y. Wu, Y. Sui, and G. Wang, “Vision-Based Real-Time Aerial ...
R. Cunha et al., “Gimbal Control for Vision-based Target Tracking,” ...
N. Wojke, A. Bewley, and D. Paulus, “Simple online and ...
D. Gordon, A. Farhadi, and D. Fox, “Re۳ : Real-Time Recurrent ...
W. Liu et al., “SSD: Single shot multibox detector,” in ...
DJI, “DJI Active Track: Make the Drones Follow You,” ۲۰۱۷. ...
H. Kang, H. Li, J. Zhang, X. Lu, and B. ...
C. Huang et al., “ACT: An Autonomous Drone Cinematography System ...
C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. ...
X. Zhou, S. Liu, G. Pavlakos, V. Kumar, and K. ...
H. Zhang, Z. Lei, G. Wang, and J. N. Hwang, ...
R. Bartak and A. Vykovsky, “Any object tracking and following ...
A. Chakrabarty, R. Morris, X. Bouyssounouse, and R. Hunt, “Autonomous ...
D. Held, S. Thrun, and S. Savarese, “Learning to track ...
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, ...
A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks ...
Y. Jia et al., “Caffe: Convolutional architecture for fast feature ...
Y. Wu, J. Lim, and M. H. Yang, “Online object ...
نمایش کامل مراجع