Design and Vehicle Test of a Modified Predictive Kalman Filter for SINS Self Accurate Initial Alignment
Publish Year: 1400
Type: Journal paper
Language: English
View: 136
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JASTI-14-2_010
Index date: 30 July 2023
Design and Vehicle Test of a Modified Predictive Kalman Filter for SINS Self Accurate Initial Alignment abstract
This paper presents a new Modified Predictive Kalman Filter (MPKF). To solve the problem of a strap-down inertial navigation system (SINS) self-alignment process that the standard Kalman filters cannot give the optimal solution when the system model and stochastic information are unknown accurately. The proposed algorithm is applied to SINS in the initial alignment process with a large misalignment heading angle. The filter is based on the idea of an accurate predictive filter applies n-steps ahead prediction of the SINS model errors to effectively enhance the corrections of the current information residual error on the system. Firstly, the formulations of a novel predictive filter and a fine alignment algorithm for SINS are presented. Secondly, the vehicle results demonstrate the superior performance of the proposed method, in which the MPKF algorithm is less sensitive to uncertainty. It performs faster and more accurate estimation of SINS' initial orientation angles compared with the conventional EKF method.
Design and Vehicle Test of a Modified Predictive Kalman Filter for SINS Self Accurate Initial Alignment Keywords:
Modified Predictive Kalman Filter (MPKF) , Self Alignment , Strap-down Inertial Navigation System (SINS) , Large Heading Angle
Design and Vehicle Test of a Modified Predictive Kalman Filter for SINS Self Accurate Initial Alignment authors
Nemat Allah Ghahremani
Faculty of Electrical & Computer engineering, Malek Ashtar University of technology, Iran
Hassan Alhassan
Faculty of Electrical & Computer engineering, Malek Ashtar University of technology, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :