Artificial neural network-based model for microwave pretreatment of sugarcane bagasse
Publish place: The 14th Conference of chemical Engineering
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,563
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
NICEC14_300
Index date: 23 November 2012
Artificial neural network-based model for microwave pretreatment of sugarcane bagasse abstract
Pretreatment of lignocellulosic materials is an essential step to improve the susceptibility of this material to enzymatic hydrolysis and to enhance the efficiency of enzymatic hydrolysis. Pretreatment is a highly nonlinear process, making it difficult to set a theoretical model with confident prediction ability. Artificial neural networks (ANNs) are very effective in developing predictive models for processes where the mechanism is not described clearly compared to more traditional deterministic approaches. In this work, model predicting reducing sugar as a function of sugarcane bagasse pretreatment conditions was developed using artificial neural network. The inputs of the model were three parameters of pretreatment ( microwave assisted pretreatment type , power of microwave irradiation, and microwave treatment time), while the reducing sugar concentration was the output. The effect of the number of hidden processing elements on the error in prediction was studied
Artificial neural network-based model for microwave pretreatment of sugarcane bagasse Keywords:
Artificial neural network-based model for microwave pretreatment of sugarcane bagasse authors
m Nikzad
Chemical Engineering Department, Noshirvani University of Technology, P.O. box ۴۸۴, Babol, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :