Matrix Sequential Hybrid Credit Scorecard Based on Logistic Regression and Clustering

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 87

This Paper With 21 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JIJMS-11-1_005

تاریخ نمایه سازی: 6 شهریور 1402

Abstract:

The Basel II Accord pointed out benefits of credit risk management through internal models to estimate Probability of Default (PD). Banks use default predictions to estimate the loan applicants’ PD. However, in practice, PD is not useful and banks applied credit scorecards for their decision making process. Also the competitive pressures in lending industry forced banks to use profit scorecards, which show the profitability of customers. Applying these scorecards together makes the loan decision making process for banks more confusing. This paper has an obvious and clean solution for facilitating the confusion of loan decision making process by combining the credit and profit scorecards through introducing a matrix sequential hybrid credit scorecard. The applicability of the introduced matrix sequential hybrid scorecard results are shown using data from an Iranian bank.

Authors

سیدمهدی سادات رسول

Faculty of Management, Kharazmi University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (۲۰۰۳). ...
  • Ben-David, A. (۲۰۰۸). Rule effectiveness in rule-based systems: A credit ...
  • Bonacchi, M., , Ferrari, M., Pellegrini, M., (۲۰۰۸), The lifetime ...
  • Crook, J. N., Edelman, D. B. , & Thomas, L. ...
  • Dong, G., Lai, K. K., &Yen, J. (۲۰۱۰). Credit scorecard ...
  • Eisenbeis, R. A. (۱۹۷۷). Pitfalls in the application of discriminant ...
  • Florez-Lopez, R. (۲۰۱۰). Effects of missing data in credit risk ...
  • Hand, D. J. (۲۰۰۵). Good practice in retail credit scorecard ...
  • Hand, D. J., & Adams, N. M. (۲۰۱۴). Selection bias ...
  • Harrell, F. E., & Lee, K. L. (۱۹۸۵). A comparison ...
  • Hoffmann, F., Baesens, B., Mues, C., Van Gestel, T., & ...
  • Huang, Z., Chen, H., Hsu, C. J. , Chen, W. ...
  • Gao, L., Rajaratnam K., Beling P., (۲۰۱۵). Loan origination decisions ...
  • Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. ...
  • Malhotra, R., & Malhotra, D. K. (۲۰۰۲). Differentiating between good ...
  • Martens, D., Baesens, B., Van Gestel, T. , &Vanthienen, J. ...
  • Ong, C. S., Huang, J. J., & Tzeng, G. H. ...
  • Rousseeuw, P. J. (۱۹۸۷). Silhouettes: A graphical aid to the ...
  • Siddiqi, N. (۲۰۱۷). Intelligent credit scoring: Building and implementing better ...
  • Schreiner, M., Woller G., (۲۰۱۰). A Simple Poverty Scorecard for ...
  • Van Gestel, T., & Baesens, B. (۲۰۰۹). Credit risk management: ...
  • West, D. (۲۰۰۰). Neural network credit scoring models. Computers & ...
  • Wiginton, J. C. (۱۹۸۰). A note on the comparison of ...
  • Whittaker, J., Whitehead, C., and Somers. M., (۲۰۰۷).The Journal of ...
  • نمایش کامل مراجع