سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Study of Quantitative Structure-Activity Relationship (QSAR) of Diarylaniline Analogues as in Vitro Anti-HIV-1 Agents in Pharmaceutical Interest

Publish Year: 1396
Type: Journal paper
Language: English
View: 116

This Paper With 21 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_CHM-1-2_007

Index date: 3 September 2023

Study of Quantitative Structure-Activity Relationship (QSAR) of Diarylaniline Analogues as in Vitro Anti-HIV-1 Agents in Pharmaceutical Interest abstract

A study of quantitative structure-activity relationship (QSAR) is applied to a set of 24 molecules derived from diarylaniline to predict the anti-HIV-1 biological activity of the test compounds and find a correlation between the different physic-chemical parameters (descriptors) of these compounds and its biological activity, using principal components analysis (PCA), multiple linear regression (MLR), multiple non-linear regression (MNLR) and the artificial neural network (ANN). We accordingly proposed a quantitative model (non-linear and linear QSAR models), and we interpreted the activity of the compounds relying on the multivariate statistical analysis. The topological descriptors were computed with ACD/ChemSketch and ChemBioOffice14.0 programs. A correlation was found between the experimental activity and those obtained by MLR and MNLR such as (Rtrain = 0.886 ; R2train = 0.786) and (Rtrain = 0.925 ; R2train = 0.857) for the training set compounds, and (RMLR-test = 0.6) and (RMNLR-test = 0.7) for a randomly chosen test set of compounds, this result could be improved with ANN such as (R = 0.916 and R2 = 0.84) with an architecture ANN (6-1-1). To evaluate the performance of the neural network and the validity of our choice of descriptors selected by MLR and trained by MNLR and ANN, we used cross-validation method (CV) including (R = 0.903 and R2 = 0.815) with the procedure leave-one-out (LOO). The results showed that the MLR and MNLR have served to predict activities, but when compared with the results given by a 6-1-1 ANN model. We realized that the predictions fulfilled by the latter model were more effective than the other models. The statistical results indicated that this model is statistically significant and showing a very good stability towards the data variation in leave-one-out (LOO) cross validation.

Study of Quantitative Structure-Activity Relationship (QSAR) of Diarylaniline Analogues as in Vitro Anti-HIV-1 Agents in Pharmaceutical Interest Keywords:

Study of Quantitative Structure-Activity Relationship (QSAR) of Diarylaniline Analogues as in Vitro Anti-HIV-1 Agents in Pharmaceutical Interest authors

Youness Bouakarai

LAC, Laboratory of Applied Chemistry, Faculty ofScience and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco

Fouad Khalil

Equipe Matériaux, Environnement & Modélisation,ESTM, University Moulay Ismail, Meknes, Morocco

Mohammed Bouachrin

LAC, Laboratory of Applied Chemistry, Faculty ofScience and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Mandal A.S., Roy K. Eur. J. Med. Chem., ۲۰۰۹, ۴۴:۱۵۰۹[۲]Vadivelan ...
ACD/Labs Extension for ChemBioOffice Version ۱۴.۰ for Microsoft Windows User’s ...
Allinger N.L. J. Am. Chem. Soc., ۱۹۷۷, ۹۹:۸۱۲۷[۲۲]XLSTAT ۲۰۱۵ Add-in ...
نمایش کامل مراجع