Cluster Analysis of Lean Production Criteria in Cell Formation

Publish Year: 1383
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,514

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

IIEC03_013

تاریخ نمایه سازی: 10 مهر 1385

Abstract:

Cellular manufacturing system (CMS) is known as an effective tool in lean production (LP). This system provides LP targets in shop floor level while decreases transportation, increases labor empowerment, facilitates product development and the like. However, LP is described by some basics and aspects such as pull, flow, value and so on. Thus, this article investigates effects of CMS on LP targets. In this due, several criteria in CMS are recognized. These criteria are then categorized respecting their effect on LP system and its target. This categorization is done applying fuzzy clustering approach while parameters face uncertainty. Finally, results are analyzed through related dgraphs.

Authors

Ahmad Norang

Dept. of Industrial Eng., Imam Hossein University, Tehran, Iran

Mehdi Ghazanfari

Dept. of Industrial Eng., Iran University of Science and Technology, Tehran, Iran

Soroosh Saghiri

Dept. of Industrial Eng., Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • کنفرانس بین املی مهندسی صنایع 23 و 24 تیرماه 1383 ...
  • کنفرانس بین املی مهندسی صنایع 23 و 24 تیرماه 1383 ...
  • Babson, S. (1995). Lean work: empowerment and exploitation in the ...
  • Ben-Arieh, D. & Tri antaphyllou, E. (1992). Quantifying data for ...
  • Bezdek, J.C. and Pal, S.K. (1992). Fuzzy models for pattern ...
  • Bezdek, J.C. (1981). Pattern recognition with fuzzy objective function algorithms. ...
  • C h andra sekharan, M.P. & Rajagopalan, R. (1986). An ...
  • Chu, C.H. & Hayya, J.C. (1991). A fuzzy clustering approach ...
  • Dimopoulos, C., & Mort, N. (2001). A hierarchical clustering methodology ...
  • _ International Industrial Engineering Conference 13&14th July 2004 ...
  • Duda, R., & Hart, P. (1973). Pattern classification and scene ...
  • Gath, I., & Geva, A.B. (1989). Unsupervised optimal fuzzy clustering. ...
  • Gill, A. & Bector, C.R. (1997). A fuzzy linguistic approach ...
  • Gindy, N.N.Z., Ratchev, T.M. & Case, K. (1995) Component grouping ...
  • Gustafson, E.E. & Kessel, W.C. (1979). Fuzzy clustering with a ...
  • Runkler, T. (1999). Fuzzy cluster analysis: م& Hoppner, F., Klawonn, ...
  • Lee, S.Y. & Chen, T.C. (2001). Using evolutionary computation approach ...
  • Masnata, A. & Settineri, I. (1997). An application of fuzzy ...
  • Niepce, W. & Molleman, E. (1996). A case study: characteristic ...
  • Skorstad, E. (1994). Lean production, conditions of work and worker ...
  • Tarsuslugil, M. & Bloor, J. (1979). The use of similarity ...
  • Womack, J.; Jones, D. & Roos, D. (1991). The machine ...
  • Xu, H. & Wang, H. (1989). Part family formation for ...
  • _ International Industrial Engineering Conference 13&14th July 2004 Amirkabin University ...
  • _ 8.1203] 4.6810 4.7179 ا 7.8419 _ 4.5081 ...
  • 8.2490 4.5118 l 6.0002 7.2576 _ 8.4991 ...
  • نمایش کامل مراجع