Intelligent and Optimal Control of Air Conditioning ‎Systems by Achieving Comfort and Minimize Energy

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 122

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JADSC-4-2_005

تاریخ نمایه سازی: 15 مهر 1402

Abstract:

In this study, artificial neural networks, artificial neural network combination with genetic algorithm and neural network combination with Kalman filter were used to optimally model and control a real air conditioning system. Using the above methods, the system is first trained and after verifying the modeling accuracy, the capability of this modeling to predict the future conditions of the system is investigated. In addition to the subsystems investigated in both heating and cooling phases by mass and energy equations in Simulink simulated by Matlab software, the results of this section are finally compared with the optimal modeling results. The most important advantage of artificial neural network modeling over mass and energy equation modeling approaches is that it captures all the uncertainties and nonlinear properties of the air conditioning system due to the use of real data for modeling. It takes. Therefore, this method can optimize energy consumption in air conditioners by predicting the future conditions of the system and by precisely adjusting the time of turning on and off the main energy consuming equipment. The most important achievement of this research is more accurate and realistic modeling of the nonlinear air conditioning system.Comparing the methods used in the research for simulation methods using mass and energy equations, modeling using Bayesian trained neural network, artificial neural network modeling using MLP, modeling using neural network and genetic algorithm, modeling Using neural network and Kalman filter, the square error is equal to ۰.۰۰۶, ۰.۱۸, ۰.۰۵۶, ۰.۱۴۵۶ and more than ۰.۵, respectively.

Authors

Yazdan Daneshvar

Department of civil engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran.

Majid Sabzehparvar

Department of industrial engineering collage of engineering, karaj branch, Islamic Azad University, Karaj. Iran.

Seyed Amir Hossein Hashemi

Department of civil engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Deng, Z. and Q. Chen, Development and validation of a ...
  • Aguilera, J.J., O.B. Kazanci, and J. Toftum, Thermal adaptation in ...
  • Harkouss F, Fardoun F, Biwole P-H “Multi-objective optimization methodology for ...
  • Lorena Tuballa M, Lochinvar Abundo M, “A review of the ...
  • Mogles N, Padget J, Gabe-Thomas E, Walker I, Lee J, ...
  • Mohammadi M, Noorollahi Y, Mohammadi B, Hosseinzadeh, M, Yousefi H, ...
  • Afroz, Z., et al., Modeling techniques used in building HVAC ...
  • Ward, J., J. Wall, and G. Platt, HVAC control system ...
  • Wang, Y., et al., Evaluation on classroom thermal comfort and ...
  • Ning, M. and M. Zaheeruddin, Neuro-optimal operation of a variable ...
  • Xian-Mei, Z., L. Hao-Yan, and Z. Jin. GA in Optimized ...
  • Labus, J., et al. ANN application to modelling and control ...
  • Tashtoush, B., M. Molhim, and M. Al-Rousan, Dynamic model of ...
  • Karadağ, R. and Ö. Akgöbek, The prediction of convective heat ...
  • Shen, C., L. Wang, and Q. Li, Optimization of injection ...
  • Liu, W., et al., Springback prediction for sheet metal forming ...
  • Huang, H., et al., A new zone temperature predictive modeling ...
  • Sum, J., et al., On the Kalman filtering method in ...
  • Wang, S. and X. Jin, Model-based optimal control of VAV ...
  • Lu, L., et al., HVAC system optimization—in-building section. Energy and ...
  • Maasoumy, M., Modeling and optimal control algorithm design for hvac ...
  • Nakahara, N., et al. Load prediction for optimal thermal storage-comparison ...
  • Parvaresh, A., S.M.A. Mohammadi, and A. Parvaresh, A new mathematical ...
  • Macek, K. and K. Mařík, A methodology for quantitative comparison ...
  • Tiğrek, T., S. Dasgupta, and T.F. Smith, Nonlinear optimal control ...
  • Platt, G., et al., Adaptive HVAC zone modeling for sustainable ...
  • Singh, G., M. Zaheer-Uddin, and R. Patel, Adaptive control of ...
  • Anderson, M., et al., An experimental system for advanced heating, ...
  • Kaur, H. and D.S. Salaria, Bayesian regularization based neural network ...
  • Jin, G.-Y., et al., A simple dynamic model of cooling ...
  • Mustafaraj, G., G. Lowry, and J. Chen, Prediction of room ...
  • Xu, X., S. Wang, and G. Huang, Robust MPC for ...
  • Ruano, A.E., et al., Prediction of building's temperature using neural ...
  • نمایش کامل مراجع