A New VAD Algorithm using Sparse Representation and Updated Dictionary in Spectrogram Domain
Publish Year: 1400
Type: Journal paper
Language: English
View: 173
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADSC-4-1_008
Index date: 7 October 2023
A New VAD Algorithm using Sparse Representation and Updated Dictionary in Spectrogram Domain abstract
This article proposes the new VAD (Voice Activity Detection) method was made using Spectrogram Domain (Spectro-Temporal Response Field) space based on sparse representation. Spectrogram Domain components have two dimensions of time and frequency. On the other hand, using sparse representation in learning dictionaries of speech and noise and updating dictionaries, causes better separation of speech and noise segments. In this algorithm, using auditory spectrogram and sparse representation, an updating dictionaries with different atom sizes and K-SVD (k-means clustering method) and NMF (non-negative matrix factorization) learning methods were constructed and the results indicate that this method works well. For example, the proposed VAD performance was obtained in SNRs greater than 0dB is more than 92.71% and 91.21% in White noise and Car noise respectively, which shows the good performance of the proposed VAD compared to other methods. By comparing the NDS and MSC evaluation parameters with other methods, the results show better performance of the proposed method.
A New VAD Algorithm using Sparse Representation and Updated Dictionary in Spectrogram Domain Keywords:
Spectro-Temporal Response Field , Voice Activity Detection (VAD) , sparse representation , updating dictionaries
A New VAD Algorithm using Sparse Representation and Updated Dictionary in Spectrogram Domain authors
Mohadeseh Eshaghi
Department of Electrical Engineering, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :