Application of different inverse methods for combination of vS and vGPR data to estimate porosity and water saturation
Publish place: Journal of the Earth and Space Physics، Vol: 41، Issue: 4
Publish Year: 1394
نوع سند: مقاله ژورنالی
زبان: English
View: 98
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JESPHYS-41-4_008
تاریخ نمایه سازی: 26 مهر 1402
Abstract:
Inverse problem is one of the most important problems in geophysics as model parameters can be estimated from the measured data directly using inverse techniques. In this paper, applying different inverse methods on integration of S-wave and GPR velocities are investigated for estimation of porosity and water saturation. A combination of linear and nonlinear inverse problems are solved. Linear least-squares and conjugate gradient are used as linear techniques, whereas grid search and Newton methods are selected as nonlinear ones. It is understood that vS depends on density and Lame Constant (shear modulus) and vGPR on dielectric constant. This combination seems to be logical. Shear modulus is related to porosity using Bruggeman’s rule. Density and dielectric constant is also related to porosity and water saturation. This implies that vS and vGPR are bivariate functions of porosity and water saturation, which are our unknown model parameters. The model parameters are estimated to minimize the cost functional ora system of the equations. In order to convert the nonlinear problem into the linear form, taking logarithm and changing variables were used. The problem was convex, which was inferred from the linear form, so there was just one local minimum as the global minimum of the problem. The grid search method shows that porosity and water saturation cannot be estimated by vGPR or vS uniquely. The results of the four methods were compared with each other and a good agreement was observed.
Keywords:
Authors
Ramin Varfinezhad
M.Sc. Graduate, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran
Mohamd Kazem Hafizi
Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran
Hosein Hashemi
Assistant Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :