Numerical simulation of extracorporeal membrane oxygenators to investigate important parameters and membrane thickness in oxygen exchange rate

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 56

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JCARME-13-1_001

تاریخ نمایه سازی: 2 آبان 1402

Abstract:

In this article, an extracorporeal membrane oxygenator (ECMO) is simulated in ۲D geometry using computational fluid dynamics (CFD). Momentum and mass transport equations were solved for the laminar flow regime (۳۰ < Re < ۱۳۰ for the blood channel) using the finite element method. In this study, the software COMSOL was used as the solver. To this end, the main problem of ECMO devices is the pressure drop and the risk of thrombus formation due to blood stagnation, so to solve this problem, the oxygen transfer rate to the blood should be increased. Therefore, in the present study, to optimize the oxygen transfer rate of the blood, three basic parameters were examined: blood flow velocity, oxygen velocity, and membrane thickness. Blood flow was considered at five different velocities (۰.۲, ۰.۴, ۰.۵, ۰.۶, and ۰.۸ mm/s). Results showed that increased blood flow velocity adversely affected oxygen permeability, increasing oxygen permeability from about ۶۰% at ۰.۲ mm/s to about ۲۴% at ۰.۹ mm/s. In addition, five different membrane thicknesses (۰.۰۴, ۰.۰۶, ۰.۰۸, ۰.۲, and ۰.۳ mm) were investigated, and, as expected, better oxygen exchange occurred as the membrane thickness decreased. We also found that the diffusion rate is about ۴۰% for the ۰.۴ mm/s thin films and about ۲۵% for the same inlet velocity and larger film thickness. Furthermore, the oxygen diffusivity increases from ۲۸% to ۳۸% as the oxygen gas velocity increases. However, oxygen velocities above ۰.۸ mm/s should not be used, as the range of oxygen diffusivity variation decreases with higher oxygen gas velocities.

Keywords:

Microfluidic blood oxygenator (MBO) , Extracorporeal membrane oxygenation (ECMO) , Computational Fluid Dynamics (CFD) , Porous media , polydimethylsiloxane (PDMS) membrane

Authors

Behnam Dilmaghani Hassanlouei

Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran

Nader Pourmahmoud

Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran

Pierre Sullivan

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M۵S ۳G۸, Canada

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • B. Frenckner and P. Radell,“ Respiratory failure and extracorporeal membrane ...
  • L. Lequier, S. B. Horton, D. M. McMullan, and R. ...
  • G. J. Peek, M. Mugford, R. Tiruvoipati, A. Wilson, E. ...
  • R. R. Thiagarajan, R. P. Barbaro, P. T. Rycus, D. ...
  • S. N. Vaslef, L. F. Mockros, R. W. Anderson, and ...
  • S. N. Vaslef, L. F. Mockros, K. E. Cook, R. ...
  • G. Catapano, H. D. Papenfuss, A. Wodetzki, and U. Baurmeister,“ ...
  • T. He, S. Yu, J. He, D. Chen, J. Li, ...
  • V. Evren,“ A numerical approach to the determination of mass ...
  • J. Zhang, T. D. Nolan, T. Zhang, B. P. Griffith, ...
  • T. Yeager and S. Roy,“ Evolution of gas permeable membranes ...
  • W. J. Federspiel and K. A. Henchir,“ Lung, artificial: basic ...
  • M. Dabaghi, G. Fusch, N. Saraei, N. Rochow, J. L. ...
  • M. Dabaghi, N. Saraei, G. Fusch, N. Rochow, J. L. ...
  • H. Matharoo, M. Dabaghi, N. Rochow, G. Fusch, N. Saraei, ...
  • N. Rochow, A. Manan, W. I. Wu, G. Fusch, S. ...
  • W. -I. Wu, N. Rochow, E. Chan, G. Fusch, A. ...
  • A. Gimbel, E. Flores, A. Koo, G. García-Cardeña, and J. ...
  • J. A. Potkay,“ The promise of microfluidic artificial lungs”, Lab ...
  • M. Dabaghi, N. Saraei, G. Fusch, N. Rochow, J. L. ...
  • T. Kniazeva, A. A. Epshteyn, J. C. Hsiao, E. S. ...
  • J. A. Potkay, M. Magnetta, A. Vinson, and B. Cmolik,“ ...
  • T. Rieper, C. Müller, and H. Reinecke,“ Novel scalable and ...
  • A. Thompson, L. Marks, M. Goudie, A. Rojas-Pena, H. Handa, ...
  • A. J. Thompson, L. J. Ma, T. J. Plegue, and ...
  • E. R. Weibel, The pathway for oxygen: structure and function ...
  • M. Dabaghi, N. Saraei, G. Fusch, N. Rochow, J. L. ...
  • L. J. Ma, E. A. Akor, A. J. Thompson, and ...
  • D. Han, A. Shah, M. A. Awad, Z. J. Wu, ...
  • S. McKee, E. A. Dougall, and N. J. Mottram,“ Analytic ...
  • L. Mockros and R. Leonard,“ Compact cross–flow tubular oxygenators”, ASAIO ...
  • M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, ...
  • J. A. Potkay,“ A simple, closed-form, mathematical model for gas ...
  • P. Puttkammer, Boundary layer over a flat plate, BSc report, ...
  • M. S. Islam and J. Szpunar,“ Study of dialyzer membrane ...
  • V. H. Huxley and H. Kutchai,“ The effect of the ...
  • V. H. Huxley and H. Kutchai,“ Effect of diffusion boundary ...
  • نمایش کامل مراجع