Adaptive Input-Output Feedback Linearization Control for Islanded Inverter-Based Microgrids
Publish place: International Journal of Industrial Electronics, Control and Optimization، Vol: 6، Issue: 3
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 111
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IECO-6-3_003
تاریخ نمایه سازی: 10 آبان 1402
Abstract:
Due to the growth of renewable energies and the need for sustainable electrical energy, AC microgrids (MGs) have been the subject of intense research. Medium voltage MGs will soon have a special place in the power industry. This paper uses a new and effective control scheme for islanded inverter-based medium voltage MGs using the master-slave (MS) technique. The controllers only need local measurements. The designed controls are based on adaptive input-output feedback linearization control (AIOFLC). These controls have a high-performance response; and are robust against some uncertainties and disturbances. The use of the designed control scheme makes the output voltage of distributed generation (DG) sources have negligible harmonics. Besides, the generated voltage and active/reactive powers track their references effectively. The model of the inverter-based DGs is considered in a stationary reference frame, and there is no need for any coordinate frame transformation. The control method presented in this paper can be used for MGs with any number of inverter-based DGs and parallel inverters. The effectiveness of the proposed control scheme is evaluated by simulation in SIMULINK/MATLAB environment and compared with that of feedback linearization control (FLC) and conventional sliding mode control (CSMC).
Keywords:
Authors
Navid Abjadi
Department of Electrical Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :