سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Electrical Load Manageability Factor Analyses by Artificial Neural Network Training

Publish Year: 1398
Type: Journal paper
Language: English
View: 114

This Paper With 9 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JOAPE-7-2_006

Index date: 4 November 2023

Electrical Load Manageability Factor Analyses by Artificial Neural Network Training abstract

On typical medium voltage feeder, Load side management means power energy consumption controlling at connected loads. Each load has various amount of reaction to essential parameters variation that collection of these reactions is mentioned feeder behavior to each parameter variation. Temperature, humidity, and energy pricing variation or major event happening and power utility announcing to the customers are essential parameters that are considered at recent researches. Depends on amount of improvement that each changeable parameters effect on feeder load consumption, financial assets could be managed correctly to gain proper load side management. Collecting feeder loads behavior to all mentioned parameters will gain Load Manageability Factor (LMF) that helps power utilities to manage load side consumption. Calculating this factor needs to find out each types of load with unique inherent features behavior to each parameters variation. This paper and future works will help us to catch mentioned LMF. In this paper analysis of typical commercial feeder behavior due to temperature and humidity variation with training artificial neural network will be done. Load behavior due to other essential parameters variations like energy pricing variation, major event happening, and power utility announcing to the customers, and etc will study in future works

Electrical Load Manageability Factor Analyses by Artificial Neural Network Training Keywords:

رفتار بار , مدیریت سمت بار , حساسیت بار , ضریب مدیریت پذیری و شبکه عصبی

Electrical Load Manageability Factor Analyses by Artificial Neural Network Training authors

N. Eskandari

دانشکده مهندسی -گروه برق دانشگاه زنجان

S. Jalilzadeh

Department of Electrical Engineering, University of Zanjan, Zanjan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
M. Alilou, D. Nazarpour, H. Shayeghi, “Multi-Objective Optimization of demand ...
M. Kazemi-Khafri, A. Badri, A. Motie-Birjandi, “Demand response based model ...
N. Eskandari, S. Jalilzadeh, “Residential load manageability factor analyses by ...
M. Bartos, M. Chester, N. Johnson, B. Gorman, D. Eisenberg, ...
A. A. Salehizade, M. Rahmanian, M. Farajzadeh, and A. Ayoubi, ...
P. Sullivan, J. Colman, E. Kalendra, “Predicting the Response Of ...
M. U. Fahad, N. Arbab, “Factor Affecting Short Term Load ...
Y. Yoon, D, Kang, Y. Yoon, “The Temperature Sensitivity of ...
N. Lu, T. Taylor, W. Jiang, C. Jin, J. C. ...
N. Lu, T. Taylor, W. Jiang, C. Jin, J. C. ...
C. Crowley, F. L. Joutz, “Weather effects on electricity loads: ...
C. S. Chen, M. S. Kang, J. C. Hwang, and ...
M. H. Albadi, E. F. El-Saadany, “A summary of demand ...
M. Yu, and S. H. Hong, “Supply-demand balancing for power ...
M. Asadi, and M. H. Moradi, “Investigation of DSM challenges ...
N. Li, L. Chen, and M. A. Dahleh, “Demand Response ...
C. Vivekananthan, Y. Mishra, G. Ledwich, and F. Li, “Demand ...
نمایش کامل مراجع