سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Impact of Imputation, Reference Population Structure, and Single Nucleotide Polymorphism Panel Density on Accuracy of Genomic Evaluation in Purebred and Crossbred Populations

Publish Year: 1399
Type: Journal paper
Language: English
View: 136

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JASTMO-23-1_003

Index date: 14 November 2023

Impact of Imputation, Reference Population Structure, and Single Nucleotide Polymorphism Panel Density on Accuracy of Genomic Evaluation in Purebred and Crossbred Populations abstract

The objective of this study was to compare the accuracy of genomic breeding values prediction with different marker densities before and after the imputation in the simulated purebred and crossbred populations based on different scenarios of reference population and methods of marker effects estimation. The simulated populations included two purebred populations (lines A and B) and two crossbred populations (Cross and Backcross). Three different scenarios on selection of animals in the reference set including: (1) A high relationship with validation population, (2) Random, and (3) High inbreeding rate, were evaluated for imputation of validation population with the densities of 5 and 50K to 777K single marker polymorphism. Then, the accuracy of breeding values estimation in the validation population before and after the imputation was calculated by ABLUP, GBLUP, and SSGBLUP methods in two heritability levels of 0.25 and 0.5. The results showed that the highest accuracy of breeding values prediction in the purebred populations was obtained by GBLUP method and in the scenario of related reference population with validation set. However, in the crossbred population for the trait with low heritability (h2= 0.25), the highest accuracy of breeding values prediction in the weighting mechanism was equal to (=0.2). Also, results showed that in the scenario of related reference population selection when 50K panel was used for genotype imputation to 777K SNPs, the prediction accuracy of genomic breeding values increased. But, in most scenarios of random and inbred reference set selection, there was no significant difference in the accuracy of genomic breeding values prediction between 5K and 50K SNPs after genotype imputation to 777K.

Impact of Imputation, Reference Population Structure, and Single Nucleotide Polymorphism Panel Density on Accuracy of Genomic Evaluation in Purebred and Crossbred Populations Keywords:

Impact of Imputation, Reference Population Structure, and Single Nucleotide Polymorphism Panel Density on Accuracy of Genomic Evaluation in Purebred and Crossbred Populations authors

Sh. Barjasteh

Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Islamic Republic of Iran.

Gh. R. Dashab

Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Islamic Republic of Iran.

M. Rokouei

Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Islamic Republic of Iran.

M. Shariati

Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.

M. Vafaye Valleh

Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Islamic Republic of Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Boison, S. A., Utsunomiya, A. T. H., Santos, D. J. ...
Chang, L., Toghiani, S., Ling, A., Aggrey, S. E. and ...
Calus, M. P. L. ۲۰۱۰. Genomic Breeding Value Prediction: Methods ...
Chen, L., Li, C., Sargolzaei, M. and Schenkel, F. ۲۰۱۴. ...
Clark, S. A., Hickey, J. M., Daetwyler, H. D. and ...
De Los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, ...
Georges, M., Charlier, C. and Hayes, B. ۲۰۱۹. Harnessing Genomic ...
Gray, K. A., Cassady, J. P., Huang, Y. and Maltecca, ...
Hayes, B.J., Bowman, P. J., Chamberlain, A. J. and Goddard, ...
Larmer, S., Sargolzaei, M., Brito, L., Ventura, R. and Schenkel, ...
Lopes, M. S., Bovenhuis, H., Hidalgo, A. M., Arendonk, J. ...
Meuwissen, T. H., Hayes, B. J. and Goddard, M. E. ...
Moghaddar, N., Gore, K. P., Daetwyler, H. D., Hayes, B. ...
Momen, M., Ayatollahi Mehrgardi, A., Amiri Roudbar, M., Kranis, A., ...
Mrode, R., Ojango, J. M. K., Okeyo, A. M. and ...
Oliveira Junior, G. A., Chud, T. C. S., Ventura, R.V., ...
Sargolzaei, M. and Schenkel, F. ۲۰۰۹. QMSim: A Large-Scale Genome ...
Sargolzaei, M., Chesnais, J. P. and Schenkel, F. S. ۲۰۱۴. ...
Schaeffer, L.R. ۲۰۰۶. Strategy for Applying Genome-Wide Selection in Dairy ...
Schrooten, C., Dassonneville, R., Ducrocq, V., Brondum, R., Lund, M. ...
Silva, R. M. O., Fragomeni, B. O., Lourenco, D. A. ...
Van Binsbergen, R., Bink, M. C., Calus, M. P., Van ...
VanRaden, P. M. ۲۰۰۸. Efficient Methods to Compute Genomic Predictions. ...
Villumsen, T. M., Janss, L. and Lund, M. S. ۲۰۰۹. ...
Wang, Q., Yu, Y., Yuan, J., Zhang, X., Huang, H., ...
Weigel, K. A., Van Tassell, C. P., O’Connell, J. R., ...
Zhang, Z., and Druet, T. ۲۰۱۰. Marker Imputation with Low-Density ...
نمایش کامل مراجع