سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Predicting Spatial Distribution of Redroot Pigweed (Amaranthus retroflexus L.) using the RBF Neural Network Model

Publish Year: 1397
Type: Journal paper
Language: English
View: 150

This Paper With 12 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JASTMO-20-7_014

Index date: 14 November 2023

Predicting Spatial Distribution of Redroot Pigweed (Amaranthus retroflexus L.) using the RBF Neural Network Model abstract

Estimating the spatial distribution of weeds for site-specific control is essential. Therefore, this research was conducted to predict and interpolate the spatial distribution of Amaranthus retroflexus L. populations using a Radial Basis Function Neural Network (RBF-NN) in two potato fields. Weed population data were collected from sampling 200 and 36 points, respectively, in two commercial potato fields in Jolge Rokh, of Torbat Heidarieh in Khorasan Razavi and Mojen of Shahroud in Semnan Provinces, Iran, in 2012. Some statistical tests, such as comparisons of the means, variance and statistical distribution, as well as linear regression, were used for the observed point sample data and the estimated weed seedling density surfaces to evaluate the neural network capability for predicting the spatial distribution of the weed. The results showed that the trained RBF-NN had high capability in the spatial prediction in points that were not sampled with 100% output, 0.999 coefficients, and an average error of less than 0.04 and 0.07 in the Mojen and Jolge Rokh Regions, respectively. Test results also showed that there was no significant difference between the statistical characteristics of actual data and the values predicted by the RBF-NN. According to the experimental results, the RBF-NN can be used as an alternative method to estimate the spatial changes function of annual weeds with random dispersion, such as Redroot Pigweed.

Predicting Spatial Distribution of Redroot Pigweed (Amaranthus retroflexus L.) using the RBF Neural Network Model Keywords:

Predicting Spatial Distribution of Redroot Pigweed (Amaranthus retroflexus L.) using the RBF Neural Network Model authors

A. R. Fakoor Sharghi

Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Islamic Republic of Iran.

H. Makarian

Associate Prof., Dept. of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran

A. Derakhshan Shadmehri

Assistant Prof., Dept. of Plant Protection, Faculty of Agriculture, Shahrood University of Technology. Shahrood, Iran

A. Rohani

Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.

H. Abbasdokht

Associate Prof., Dept. of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Barberi, P. ۲۰۰۲. Weed Management in Organic Agriculture: Are We ...
Burks, T. F., Shearer, S. A., Heath, J. R. and ...
Costea, M., Weaver, S. E. and Tardif, F. J. ۲۰۰۴. ...
Cowan, P., Weaver, S. E. and Swanton, C. J. ۱۹۹۸. ...
Das, A., Park, J. and Park, J. ۲۰۱۵. Estimation of ...
Dille, J. A., Milner, M., Groeteke, J. J., Mortensen, D. ...
Dyrmann, M. and Christiansen, P. ۲۰۱۴. Automated Classification of Seedlings ...
Gholipoor, M., Rohani, A. and Torani, S. ۲۰۱۳. Optimization of ...
Goslee, C. S., Peters, D. P. C. and George-Beck, K. ...
Grundy, A. C., Onyango, C. M., Phelps, K. R., Reader, ...
Heijeting, S., Van Der Werf, W., Stein, A. and Kropff, ...
Irmak, A., Jones, J. W., Batchelor, W. D., Irmak, S., ...
Jadhav, V., Chinnappa Reddy, B. and Gaddi, G. ۲۰۱۷. Application ...
Jurado-Exposito, M., Lopez-Granados, F., Gonzalez-Andujar, J. L. and Garcia-Torres L. ...
Kaul, M., Hill, R. L. and Walthall, C. ۲۰۰۵. Artificial ...
Kiani, S. and Jafari, A. ۲۰۱۲. Crop Detection and Positioning ...
Lamb, D. W. and Brown, R. B. ۲۰۰۱. Precision Agriculture: ...
Makarian, H., Rashed Mohassel, M. H., Bannayanand, M. and Nassiri, ...
Makarian, H. and Rohani, A. ۲۰۱۲. Prediction of Spatial Distribution ...
Mohammadi, J. ۲۰۱۰. Spatial variability of soil fertility, wheat yield ...
Nordmeyer, H. ۲۰۰۶. Patchy Weed Distribution and Site-Specific Weed Control ...
Rafael, A. M., Randall, S. C., Michael, J. H. and ...
Rohani, A., Abbaspour-Fard, M. H. and Abdolahpour, S. ۲۰۱۱. Prediction ...
Rohani, A., Taki, M. and Abdollhapour, F. ۲۰۱۷. A Novel ...
Shaukat, S. S. and Siddiqui, I. A. ۲۰۰۴. Spatial Pattern ...
Streibig, J. C., Gottschau, I., Dennis, B., Haas, H. and ...
Tang, J. L., Chen, X. Q., Miao, R. H. and ...
Torra, J., Royo-Esnal, A. and Chantre, G. R. ۲۰۱۶. Modeling ...
Torrecilla, J. S., Otero, L. and Sanz, P. D. ۲۰۰۴. ...
Vakil-Baghmisheh, M. T. and Pavešic, N. ۲۰۰۳. Premature Clustering Phenomenon ...
Vakil-Baghmisheh, M. T. ۲۰۰۲. Farsi Character Recognition Using Artificial Neural ...
Vangessel, M. J. and Renner, K. A. ۱۹۹۰. Redroot Pigweed ...
Wiles L. ۲۰۰۵. Sampling to Make Map for Site-Specific Weed ...
Wyse-pester, D.Y., Wiles, L. J. and Westra P. ۲۰۰۲. Infestation ...
Zarifneshat, S., Rohani, A., Ghassemzadeh, H. R., Sadeghi, M., Ahmadi, ...
Zhang, W. J., Zhong, X. Q. and Liu, H. G. ...
نمایش کامل مراجع