The Application of Bi-clustering and Bayesian Network for Gene Sets Network Construction in Breast Cancer Microarray Data

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 135

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MISJ-13-4_007

تاریخ نمایه سازی: 25 آبان 1402

Abstract:

Background: Breast cancer is one of the most prevalent types of cancer in Iranian women and the second cause of death in women worldwide. Gene mutations are the key determinants of the disease; therefore, the genetic study of this disease is of paramount importance. One of the genetic evaluation methods of this disease is microarray technology, which allows the examination of the simultaneous expression of thousands of genes. Clustering is the method for analyzing high-dimension data, which we used in the present research for collecting similar genes in separated clusters.Method: A descriptive and inferential statistical analysis was carried out to evaluate unsupervised learning models of gene expression analysis and five bi-clustering methods (including PLAID (PL), Fabia, Bimax, Cheng & Church (CC), and Xmotif) were compared. For this purpose, we obtained the microarray gene expression data for lapatinib-resistant breast cancer cell lines from previously published research. The enrichment efficacy of the clusters was evaluated with gene ontology, and the results of these five models were compared with the Jaccard index, variance stability, least-square error, and goodness of fit indices. Furthermore, the results of the best model were assessed for building a genes sets network with Bayesian networks.Results: After preprocessing, clustering was performed on the data with the dimension (۴۷۱۰ × ۱۸) of the genes. Four models, except for CC, successfully found bi-clusters in the data set. The data evaluation revealed that the results of the models were almost the same, but the PL model performed better than the others, finding ۱۱ bi-clusters; this model was used to build the network of gene sets.Conclusion: According to the results, the PL method was suitable for clustering the data. Accordingly, it could be recommended for data analysis. In addition, the gene sets network formed on gene expression data was incompetent.

Authors

Ahmad Sohrabi

Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

Neda Saraygord-Afshari

Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran

Masoud Roudbari

Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Crick F. Central dogma of molecular biology. Nature. ۱۹۷۰;۲۲۷(۵۲۵۸):۵۶۱-۳. doi: ...
  • Lee JK. Analysis issues for gene expression array data. Clin ...
  • Divina F, Aguilar-Ruiz JS. Biclustering of expression data with evolutionary ...
  • Smith RA, Cokkinides V, von Eschenbach AC, Levin B, Cohen ...
  • Society AC. Cancer News: American Cancer Society, ۱۹۴۷. [Access date: ...
  • Azizi F, Hatami H, Janghorbani M. Epidemiology and control of ...
  • Beltrame F, Papadimitropoulos A, Porro I, Scaglione S, Schenone A, ...
  • Knudsen S. Guide to analysis of DNA microarray data. ۲nd ...
  • Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters ...
  • Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, ...
  • Hacia JG, Fan JB, Ryder O, Jin L, Edgemon K, ...
  • Fei X, Lu S, Pop HF, Liang LR. GFBA: A ...
  • Gu J, Liu JS. Bayesian biclustering of gene expression data. ...
  • Yang MS. A survey of fuzzy clustering. Math Comput Model. ...
  • Gan X, Liew AW-C, Yan H. Discovering biclusters in gene ...
  • Tanay A, Sharan R, Shamir R. Biclustering algorithms: A survey. ...
  • Xie J, Ma A, Fennell A, Ma Q, Zhao J. ...
  • Hartigan JA. Direct clustering of a data matrix. J Am ...
  • Cheng Y, Church GM. Biclustering of expression data. Proc Int ...
  • Lazzeroni L, Owen A. Plaid models for gene expression data. ...
  • Murali T, Kasif S. Extracting conserved gene expression motifs from ...
  • Padilha VA, Campello RJ. A systematic comparative evaluation of biclustering ...
  • Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, ...
  • Abdalla M, Tran-Thanh D, Moreno J, Iakovlev V, Nair R, ...
  • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian ...
  • Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible ...
  • Ma S, Huang J, Shen S. Identification of cancer-associated gene ...
  • Komurov K, Tseng JT, Muller M, Seviour EG, Moss TJ, ...
  • Nielsen TD, Jensen FV. Bayesian networks and decision graphs: Information ...
  • Parry R, Jones W, Stokes T, Phan J, Moffitt R, ...
  • Liu X, Li N, Liu S, Wang J, Zhang N, ...
  • Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, ...
  • Dey DK, Ghosh S, Mallick BK. Bayesian modeling in bioinformatics. ...
  • Oghabian A, Kilpinen S, Hautaniemi S, Czeizler E. Biclustering methods: ...
  • Ranganathan S, Nakai K, Schonbach C. Encyclopedia of bioinformatics and ...
  • Naghizadeh Jahromi MM, Hajizadeh E, Kazmnejad A. cDNA microarray data ...
  • Okada Y, Fujibuchi W, Horton P. A biclustering method for ...
  • Waks AG, Winer EP. Breast cancer treatment: A review. JAMA. ...
  • Sung H, DeSantis CE, Fedewa SA, Kantelhardt EJ, Jemal A. ...
  • Bui MM, Riben MW, Allison KH, Chlipala E, Colasacco C, ...
  • Lebeau A, Denkert C, Sinn P, Schmidt M, Wöckel A. ...
  • Duffy MJ, McDermott EW, Crown J. Blood-based biomarkers in breast ...
  • Cappelletti V, Appierto V, Tiberio P, Fina E, Callari M, ...
  • Saraygord-Afshari N, Naderi-Manesh H, Naderi M. Enhanced reproducibility of the ...
  • Madeira SC, Oliveira AL. Biclustering algorithms for biological data analysis: ...
  • Bozdag D, Kumar AS, Catalyurek UV. Comparative analysis of biclustering ...
  • نمایش کامل مراجع