Multiobjective Optimization of Crop-mix Planning Using Generalized Differential Evolution Algorithm
Publish Year: 1394
Type: Journal paper
Language: English
View: 106
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JASTMO-17-5_003
Index date: 22 November 2023
Multiobjective Optimization of Crop-mix Planning Using Generalized Differential Evolution Algorithm abstract
This paper presents a model for constrained multiobjective optimization of mixed-cropping planning. The decision challenges that are normally faced by farmers include what to plant, when to plant, where to plant and how much to plant in order to yield maximum output. Consequently, the central objective of this work is to concurrently maximize net profit, maximize crop production and minimize planting area. For this purpose, the generalized differential evolution 3 algorithm was explored to implement the mixed-cropping planning model, which was tested with data from the South African grain information service and the South African abstract of agricultural statistics. Simulation experiments were conducted using the non-dominated sorting genetic algorithm II to validate the performance of the generalized differential evolution 3 algorithm. The empirical findings of this study indicated that generalized differential evolution 3 algorithm is a feasible optimization tool for solving optimal mixed-cropping planning problems.
Multiobjective Optimization of Crop-mix Planning Using Generalized Differential Evolution Algorithm Keywords:
Multiobjective Optimization of Crop-mix Planning Using Generalized Differential Evolution Algorithm authors
O. Adekanmbi
Department of Information Technology, Durban University of Technology, P. O. Box: ۱۳۳۴, Durban ۴۰۰۰, South Africa.
O. Olugbara
Department of Information Technology, Durban University of Technology, P. O. Box: ۱۳۳۴, Durban ۴۰۰۰, South Africa.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :