Applying Artificial Neural Network for Drying Time Prediction of Green Pea in a Microwave Assisted Fluidized Bed Dryer

Publish Year: 1391
نوع سند: مقاله ژورنالی
زبان: English
View: 88

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JASTMO-14-3_005

تاریخ نمایه سازی: 1 آذر 1402

Abstract:

Drying characteristics of green pea (Pisum satium) with an initial moisture content of ۷۶% (db) was studied in a fluidized bed dryer assisted by microwave heating. Four drying air temperatures (۳۰, ۴۰, ۵۰ and ۶۰ºC) and five microwave powers (۱۸۰, ۳۶۰, ۵۴۰, ۷۲۰ and ۹۰۰W) were adopted. Several experiments were conducted to obtain data for sample moisture content versus drying time. The results showed that increasing the drying air temperature resulted in up to ۵% decrease in drying time while in the microwave-assisted fluidized bed system, the drying time decreased dramatically up to ۷۸.۸%. As a result, addition of microwave energy to the fluidized bed drying is recommended to enhance the drying rate of green pea. Furthermore, in this study, the application of Artificial Neural Network (ANN) for predicting the drying time (output parameter) was investigated. Microwave power, drying air temperature, and green pea moisture content were considered as input parameters for the model. An ANN model with ۵۰ neurons was selected for studying the influence of transfer functions and training algorithms. The results revealed that a network with the logsig (Log sigmoid) transfer function and trainrp (Resilient back propagation; Rprop) back propagation algorithm made the most accurate predictions for the green pea drying system. In order to test the ANN model, the root mean square error (RMSE), mean absolute error (MAE), and standard error (SE) were calculated and showed that the random errors were within and acceptable range of ±۵% with a coefficient of determination (R۲) of ۹۸%.

Authors

L. Momenzadeh

Department of Agricultural Machinery, College of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran.

A. Zomorodian

Department of Agricultural Machinery, College of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran.

D. Mowla

Department of Chemical Engineering, College of Engineering, Shiraz University, Shiraz, Islamic Republic of Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abbasi Souraki, B. and Mowla, D. ۲۰۰۸a. Experimental and Theoretical ...
  • Abbasi Souraki, B. and Mowla, D. ۲۰۰۸a. Experimental and Theoretical ...
  • نمایش کامل مراجع