SEISMIC ENERGY DEMANDS OF INELASTIC BUILDINGS DESIGNED WITH OPTIMUM DISPLACEMENT-BASED APPROACH

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 60

This Paper With 23 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJOCE-12-3_006

تاریخ نمایه سازی: 5 آذر 1402

Abstract:

In present study, the effects of optimization on seismic energy spectra including input energy, damping energy and yielding hysteretic energy are parametrically discussed. To this end, ۱۲ generic steel moment-resisting frames having fundamental periods ranging from ۰.۳ to ۳s are optimized by using uniform damage and deformation approaches subjected to a series of ۴۰ non-pule strong ground motions. In order to obtain the optimum distribution of structural properties, an iterative optimization procedure has been adopted. In this approach, the structural properties are modified so that inefficient material is gradually shifted from strong to weak areas of a structure. This process is continued until a state of uniform damage is achieved. Then, the maximum energy demand parameters are computed for different structures designed by optimum load pattern as well as code-based pattern, and the mean energy spectra, energy-based reduction factor and the dispersion of the results are compared and discussed. Results indicate that optimum seismic load pattern can significantly affect the energy demands spectra especially in inelastic range of response. In addition, using energy-based reduction factors of optimum structures in short-period and long-period regions will result in respectively overestimation and underestimation of the required input energy demands for code-based structures, reflecting the difference dose exists in reality between the conventional forced-based methodology and energy-based seismic design approach that can more realistically incorporate the frequency content and duration of earthquake ground motions.