Optimal Prediction of Shear Properties in Beam-Column Joints Using Machine Learning Approach

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 58

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-37-1_007

تاریخ نمایه سازی: 15 آذر 1402

Abstract:

The failure of shear-type beam-column joints in reinforced concrete (RC) frames during severe earthquake attacks is a critical concern. Traditional methods for determining joint shear capacity often lack accuracy due to improper consideration of governing parameters, impacting the behaviour of these joints. This study assesses the capabilities of machine learning techniques in predicting joint shear capacity and failure modes for exterior beam-column joints, considering their complex structural behaviour. An artificial neural network (ANN) model is proposed for predicting the shear strength of reinforced exterior beam-column joints. ANN, a component of artificial intelligence that learns from past experiences, is gaining popularity in civil engineering. The ANN model is developed using a dataset comprising material properties, specimen dimensions, and seismic loading conditions from previous experimental investigations. The model considers twelve input parameters to predict shear strength in exterior beam-column joints. Training and testing of the ANN model are conducted using established design codes, empirical formulas, and a specific algorithm. The results demonstrate the superiority of the proposed Shallow Feed Forward Artificial Neural Network (SFF-ANN) compared to previous approaches. The effectiveness of an Artificial Neural Network (ANN) model was quantitatively assessed in this study, with a focus on its performance in comparison to various design codes commonly used in structural engineering. The model was assessed using the coefficient of determination (R۲) and achieved R-squared values of ۹۹%, ۹۴%, and ۹۸% during the training, testing, and validation stages, respectively. The study highlights the significance of beam reinforcement as a key element in estimating shear capacity for exterior RC beam-column connections. Although the proposed models exhibit a high degree of precision, future research should focus on developing improved models using expanded datasets and advanced algorithms for enhanced pattern recognition and performance.

Authors

S. Ramavath

Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, India

S. R. Suryawanshi

Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Mashhadi R, Dastan Diznab MA, Tehrani FM. Strut-and-tie model for ...
  • Marcos CJL, Silva DL, editors. Shear Strength Prediction of Unusual ...
  • Park SH, Yoon D, Kim S, Geem ZW, editors. Deep ...
  • Murad YZ, Hunifat R, Wassel A-B. Interior reinforced concrete beam-to-column ...
  • Hung C-C, Hsiao H-J, Shao Y, Yen C-H. A comparative ...
  • Feng D-C, Fu B. Shear strength of internal reinforced concrete ...
  • Karayannis CG, Sirkelis GM. Strengthening and rehabilitation of RC beam–column ...
  • Pantelides CP, Clyde C, Reaveley LD. Performance-based evaluation of reinforced ...
  • Ghobarah A, Said A. Seismic rehabilitation of beam-column joints using ...
  • Antonopoulos CP, Triantafillou TC. Experimental investigation of FRP-strengthened RC beam-column ...
  • Hoffschild TE. Retrofitting beam-to-column joints for improved seismic performance microform: ...
  • Park S, Mosalam KM, editors. Analytical and experimental study of ...
  • Hassan WM. Analytical and experimental assessment of seismic vulnerability of ...
  • نمایش کامل مراجع