Using an Artificial Neural Network Model to Predict the Number of COVID-19 Cases in Iran
Publish Year: 1401
Type: Journal paper
Language: English
View: 100
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_HDQ-7-4_003
Index date: 18 December 2023
Using an Artificial Neural Network Model to Predict the Number of COVID-19 Cases in Iran abstract
Background: Forecasting methods are used in various fields including the health problems. This study aims to use the Artificial Neural Network (ANN) method for predicting coronavirus disease 2019 (COVID-19) cases in Iran.
Materials and Methods: This is a descriptive, analytical, and comparative study to predict the time series of COVID-19 cases in Iran from May 2020 to May 2021. An ANN model was used for forecasting, which had three Input, output, and intermediate layers. The network training was conducted by the Levenberg-Marquardt algorithm. The forecasting accuracy was measured by calculating the mean absolute percentage error.
Results: The mean absolute error of the designed ANN model was 6 and its accuracy was 94%.
Conclusion: The ANN has high accuracy in forecasting the number of COVID-19 cases in Iran. The outputs of this model can be used as a basis for decisions in controlling the COVID-19.
Using an Artificial Neural Network Model to Predict the Number of COVID-19 Cases in Iran Keywords:
Using an Artificial Neural Network Model to Predict the Number of COVID-19 Cases in Iran authors
Nabi Omidi
Department of Management, Payam Noor University, Tehran, Iran.
Mohammad Reza Omidi
Department of Industrial Engineering, Payam Noor University, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :