سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Using an Artificial Neural Network Model to Predict the Number of COVID-19 Cases in Iran

Publish Year: 1401
Type: Journal paper
Language: English
View: 100

This Paper With 6 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_HDQ-7-4_003

Index date: 18 December 2023

Using an Artificial Neural Network Model to Predict the Number of COVID-19 Cases in Iran abstract

Background: Forecasting methods are used in various fields including the health problems. This study aims to use the Artificial Neural Network (ANN) method for predicting coronavirus disease 2019 (COVID-19) cases in Iran. Materials and Methods: This is a descriptive, analytical, and comparative study to predict the time series of COVID-19 cases in Iran from May 2020 to May 2021. An ANN model was used for forecast​ing, which had three Input, output, and intermediate layers. The network training was conducted by the Levenberg-Marquardt algorithm. The forecasting accuracy was measured by calculating the mean absolute percentage error. Results: The mean absolute error of the designed ANN model was 6 and its accuracy was 94%. Conclusion: The ANN has high accuracy in forecasting the number of COVID-19 cases in Iran. The outputs of this model can be used as a basis for decisions in controlling the COVID-19.

Using an Artificial Neural Network Model to Predict the Number of COVID-19 Cases in Iran Keywords:

Using an Artificial Neural Network Model to Predict the Number of COVID-19 Cases in Iran authors

Nabi Omidi

Department of Management, Payam Noor University, Tehran, Iran.

Mohammad Reza Omidi

Department of Industrial Engineering, Payam Noor University, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Seery V, Raiden SC, Algieri SC, Grisolía NA, Filippo D, ...
نمایش کامل مراجع