Spatial analysis and investigation of Tele-connection patterns with drought in central Iran
Publish place: Journal of the Earth and Space Physics، Vol: 42، Issue: 4
Publish Year: 1395
Type: Journal paper
Language: Persian
View: 152
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JESPHYS-42-4_006
Index date: 18 December 2023
Spatial analysis and investigation of Tele-connection patterns with drought in central Iran abstract
This study, adopting an environmental approach to atmospheric circulation, estimates drought periods over a ۲۰-year period (۱۹۹۲-۲۰۱۱) in ۲۱ synoptic stations in Kerman, Yazd and Isfahan provinces, which share a long-term statistical period, using Standardized Precipitation Index (SPI). The data pertinent to ۱۸ teleconnection patterns were derived and compared with climatic data of provinces under study and the relationship between major droughts in the region and these patterns was evaluated in accordance with correlation methods and multivariate regression model. According to the results, a total of ۳۷.۴۲% of annual SPI variation in Isfahan province, ۵۱.۰۹ % of SPI variation in Kerman province and ۴۲.۱۷% of SPI variation in Yazd province can be explained by the above patterns. Finally, the multivariate Scandinavia pattern (SCA) in Isfahan, East Atlantic (EA) pattern in Kerman and Tropical Southern Atlantic (TSA) pattern in Yazd were found to be the most effective patterns in explaining annual SPI changes in central Iran.
Spatial analysis and investigation of Tele-connection patterns with drought in central Iran Keywords:
Tele-connection , Standardized Precipitation Index , Kriging , Correlation and Regression Models , Central Iran
Spatial analysis and investigation of Tele-connection patterns with drought in central Iran authors
mehran fatemi
کارشناس مدیریت بحران
Kamal Omidvar
عضو هیات علمی دانشگاه یزد
- -
کارمند دانشگاه پیام نور اردبیل
- -
دانشگاه یزد
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :