Improving the Transient Stability of a Synchronous Generator by Using Braking Resistance to Increase the Critical Clearing Fault Time
Publish place: Eurasian Journal of Science and Technology، Vol: 1، Issue: 1
Publish Year: 1400
Type: Journal paper
Language: English
View: 152
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_EJST-1-1_005
Index date: 19 December 2023
Improving the Transient Stability of a Synchronous Generator by Using Braking Resistance to Increase the Critical Clearing Fault Time abstract
In general, the stability of the power system can be considered a feature of the system that enables it to remain in equilibrium under normal conditions and regain a different acceptable state if affected by disturbance. Instability in a power system may take many forms, depending on the composition of the system and its operating modes. In order to evaluate the proposed method in damping transient fluctuations and network stability, a study has been carried out on a typical network. Since the topic of the article is in the field of transient stability, in part of the paper, braking resistance modeling in transient stability studies has been investigated. In the section on brake resistor control, brake resistor control is introduced by a switched Thyristor, using the trapezoidal method. Finally, the simulation results of the studied network are presented with the presence of TCBR and its capability of damping in the desired network.
Improving the Transient Stability of a Synchronous Generator by Using Braking Resistance to Increase the Critical Clearing Fault Time Keywords:
Improving the Transient Stability of a Synchronous Generator by Using Braking Resistance to Increase the Critical Clearing Fault Time authors
Ebadollah Amouzad Mahdiraji
Department of Engineering, Sari Branch, Islamic Azad University, Sari, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :