سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

کاربرد تجزیه مقدار منفرد در تضعیف نوفه تصادفی در داده های مصنوعی و واقعی لرزه ای

Publish Year: 1393
Type: Journal paper
Language: Persian
View: 103

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_PRRIP-24-80_012

Index date: 25 December 2023

کاربرد تجزیه مقدار منفرد در تضعیف نوفه تصادفی در داده های مصنوعی و واقعی لرزه ای abstract

حضور انواع نوفه از جمله نوفه تصادفی در داده لرزه ای همواره مشکلاتی را در استفاده از داده لرزه ای بوجود می آورد، لذا این نوع از نوفه ها باید در مراحل پردازشی تضعیف گردند. روش تجزیه مقدار منفرد بر اساس جبر خطی و بر پایه همدوسی داده بنا شده است که می تواند پدیده های همدوس افقی را در تصاویر مشخصه ابتدایی شناسایی نماید. برای تضعیف نوفه تصادفی در داده نقطه عمقی مشترک پس از تحلیل سرعت و انجام تصحیحات دینامیک و پیش از برانبارش، تجزیه مقدار منفرد روی داده اعمال می گردد. بازتاب های افقی شده در تصاویر مشخصه ابتدایی شناسایی شده و بازسازی می گردند و سایر تصاویر مشخصه که حاوی نوفه تصادفی هستند برابر صفر قرار گرفته و در نتیجه نوفه تصادفی تضعیف خواهد شد. از آنجایی که تجزیه مقدار منفرد می تواند پدیده های افقی را به خوبی شناسایی نماید، بنابراین اگر تصحیحات استاتیک و یا دینامیک به خوبی روی داده ها اعمال نشده باشند و در داده نقطه عمقی مشترک بازتاب ها به جای افقی بودن دارای اعوجاج باشند، تجزیه مقدار منفرد، نمی تواند آنها را به خوبی از نوفه شناسایی نماید. در این مقاله مراحل مذکور روی یک داده نقطه عمقی مشترک مصنوعی با سطوح مختلفی از نسبت سیگنال به نوفه و یک داده واقعی مربوط به یکی از میادین هیدروکربوری ایران واقع در خشکی اعمال شده است. بر اساس نتایج، فیلتر تجزیه مقدار منفرد به خوبی می تواند ضمن حفظ بازتاب ها تا حد زیادی نوفه تصادفی را تضعیف نماید. این مسئله در داده مصنوعی حتی با سطح نوفه زیاد یعنی (نسبت سیگنال به نوفه یک) نیز به خوبی قابل مشاهده است

کاربرد تجزیه مقدار منفرد در تضعیف نوفه تصادفی در داده های مصنوعی و واقعی لرزه ای Keywords:

کاربرد تجزیه مقدار منفرد در تضعیف نوفه تصادفی در داده های مصنوعی و واقعی لرزه ای authors

سید احمد مرتضوی

دانشکده مهندسی نفت دانشگاه صنعتی امیرکبیر، تهران، ایران

عبدالرحیم جواهریان

دانشکده مهندسی نفت دانشگاه صنعتی امیرکبیر، تهران، ایران

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
. Freire S. L. M., and Ulrych T. J., “Application ...
. Tyapkin Y. K., Marmalyevskyy N. Y. and Gornyak Z. ...
. Liu X., Ground roll suppression using the Karhunen-Loeve transform, ...
. Kendall R., Jin S. and Ronen S., “An SVD-polarization ...
Lu W., “Adaptive noise attenuation of seismic images based on ...
. Bekara M., and Baan M. V., “Local singular value ...
. Chiu S. K. and Howell J. E., “Attenuation of ...
. Cary P., and Zhang C., “Ground roll attenuation via ...
. Porsani M. J., Silva M. G., Melo P. E. ...
Bekara M., and Baan M. V., “Random and coherent noise ...
. Baker K., Singular Value Decomposition Tutorial, http://www.cs.wits.ac.za/~michael/SVDTut.pdf, accessed ۱۴ ...
. Sacchi M. D., Statistical and transform methods in geophysical ...
. Lanczos C., Linear differential operators, D. Van Nostrand Co., ...
. Al-Yahya K. M., “Application of the Karhunen-Loeve transform to ...
. Sheriff R. E., and Geldart L. P., Exploration seismology, ...
. Seismic lab MATLAB code package, Signal analysis and imaging ...
نمایش کامل مراجع