A Hybrid Fuzzy Ordered Weighted Averaging Method in Mineral Prospectivity Mapping: a case for Porphyry Cu Exploration in Chahargonbad District, Iran
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 247
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-57-4_003
تاریخ نمایه سازی: 11 دی 1402
Abstract:
This research presents a case study that employs the Fuzzy Ordered Weighted Averaging (FOWA) method to develop mineral prospectivity/potential maps (MPM) for the Chahargonbad district in southeastern Iran. The primary objective of the study is to uncover intricate and concealed relationships between various evidence layers and known ore occurrences through a comprehensive analysis of multi-disciplinary geospatial data. Consequently, thirteen evidence layers were meticulously derived from existing databases, encompassing geological, geochemical, geophysical, and remote sensing data, which were then integrated using the FOWA multi-criteria decision-making approach to delineate favorable zones for porphyry Cu mineralization.The FOWA methodology employs a diverse array of decision strategies to synthesize input geospatial evidence by incorporating multiple values for an alpha parameter. This parameter serves as the cornerstone of the algorithm, influencing experts' perspectives on MPM risk. The methodology generates seven mineral potential maps to identify the most suitable one(s). By considering a prediction-area plot for data-driven weight assignment to each evidence map, the hybrid FOWA outputs were scrutinized to pinpoint the most appropriate map for targeting significant Cu occurrences. The resulting synthesized evidence map indicates an ore prediction rate of ۷۷%, with known Cu deposits primarily located within favorable zones occupying ۲۳% of the entire district area.
Keywords:
Fuzzy ordered weighted averaging , Mineral potential/prospectivity mapping , Evidence layers , Porphyry copper , Chahargonbad
Authors
Shokouh Riahi
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Maysam Abedi
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Abbas Bahroudi
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :