A Hybrid Model for Portfolio Optimization Based on Stock Price Forecasting with LSTM Recurrent Neural Network using Multi-Criteria Decision Making Techniques and Mean-CVaR

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 51

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJFMA-9-35_002

تاریخ نمایه سازی: 17 دی 1402

Abstract:

The importance of a price forecasting issue due to the market volatility is very substantial. Investors have no desire to tolerate the high risk and invest in such a market due to avoiding ambiguity and mainly looking for a suitable solution for investing with high returns and low risk. The purpose of the research is to combine decision-making techniques with recurrent neural networks to create and develop a mathematical model for stock portfolio optimization due to different time horizons. Therefore, the top ten industries were selected using the Fuzzy Analytical Hierarchy Process (FAHP), according to effective criteria on the active industries in the stock market and using the opinions of active industries' experts, between May ۲۰۱۶ and May ۲۰۲۱. Then the price of stocks was forecasted in intended time periods using Long Short Term Memory RNN. In the next step, three stock portfolios with the short-term, mid-term, and long-term time horizons were created using a Combined Compromise Solution method, and then the optimized weights of each stock in the different portfolios were defined, and an efficient frontier was drawn by using Conditional Value at Risk (CVaR). The results showed that the provided model has high efficiency in stock portfolio optimization.

Keywords:

Optimization , Fuzzy Analytical Hierarchy Process (FAHP) , Combined Compromise Solution (CoCoSo) , Long Short Term Memory (LSTM) , Conditional Value at Risk (CVaR)

Authors

Nasimeh Abdi

Ph.D. Candidate in Financial Engineering, Department of Management, Karaj Branch, Islamic Azad University, Karaj, Iran

mehdi MoradzadehFard

Associate Professor, Department of Accounting, Karaj Branch, Islamic Azad University, Karaj, Iran

Hamid Ahmadzadeh

Assistant professor Department of Accounting, Karaj Branch, Islamic Azad University, Karaj, Iran

Mahmoud Khoddam

Assistant professor, Department of Management, Karaj Branch, Islamic Azad University, Karaj, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • AmirHossini, Z., . Masoumeh Ghobadi. (۲۰۱۶). Fuzzy MCDM Approach of ...
  • Chen, K., Zhou, Y., & Dai, F. (۲۰۱۵, ۲۹ Oct.-۱ ...
  • Dezsi, E., & Nistor, I. A. (۲۰۱۶). Can deep machine ...
  • Fekri, M., & Barazandeh, B. (۲۰۱۹). Designing an Optimal Portfolio ...
  • Freitas, F. D., De Souza, A. F., & de Almeida, ...
  • Ghaffari-Nasab, N., Ahari, S., & Makui, A. (۲۰۱۱). A portfolio ...
  • Haddad, M. F. C. (۲۰۱۹). Sphere-sphere intersection for investment portfolio ...
  • Haddadi, M. r., Nademi, Y., & Tafi, F. (۲۰۲۱). Stock ...
  • Karimi, A., & goodarzi dahrizi, s. (۲۰۲۰). Stock portfolio optimization ...
  • Lwin, K. T., Qu, R., & MacCarthy, B. L. (۲۰۱۷). ...
  • Ma, Y., Han, R., & Wang, W. (۲۰۲۱). Portfolio optimization ...
  • Peng, X., & Luo, Z. (۲۰۲۱). Decision-making model for China’s ...
  • Raei, R., Basakha, H., & Mahdikhah, H. (۲۰۲۰). Equity Portfolio ...
  • Rahnama Roodposhti, F., Sadeh, E., Fallahshams, M., Ehteshamrasi, r., & ...
  • Uryasev, S. (۲۰۰۰, ۲۸-۲۸ March ۲۰۰۰). Conditional value-at-risk: optimization algorithms ...
  • نمایش کامل مراجع