Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks
Publish Year: 1402
Type: Journal paper
Language: English
View: 101
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JITM-15-0_002
Index date: 7 January 2024
Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks abstract
Co-Saliency object detection is the process of identifying common and repetitive objects from the group of images. Earlier studies have looked over several state-of-art deep neural network methodologies for co-saliency detection approach. The Deep CNN approaches rely heavily on co-saliency detection due to their potent feature extraction capabilities both deep and wide. This article assess the performance of several state-of-art deep learning model (VGG19, Inceptionv3, modifiedResNet, MobileNetV2 and PoolNet) for the purpose of co-saliency detection among images from benchmark datasets. All the models were trained on 70% part of the dataset and remaining were used for testing purpose. Experimental results show that modified ResNetmodel outperforms getting 96.53% accuracy as compared to other state-of-the-art deep neural network models.
Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks Keywords:
CNN , Co-Saliency detection , SGDM , Adam , RMS , VGG19 , Inceptionv3 , ResNet , MobileNet and PoolNet
Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :