سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks

Publish Year: 1402
Type: Journal paper
Language: English
View: 101

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JITM-15-0_002

Index date: 7 January 2024

Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks abstract

Co-Saliency object detection is the process of identifying common and repetitive objects from the group of images. Earlier studies have looked over several state-of-art deep neural network methodologies for co-saliency detection approach. The Deep CNN approaches rely heavily on co-saliency detection due to their potent feature extraction capabilities both deep and wide. This article assess the performance of several state-of-art deep learning model (VGG19, Inceptionv3, modifiedResNet, MobileNetV2 and PoolNet) for the purpose of co-saliency detection among images from benchmark datasets. All the models were trained on   70% part of the dataset and remaining were used for testing purpose. Experimental results show that modified ResNetmodel outperforms getting 96.53% accuracy as compared to other state-of-the-art deep neural network models.

Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks Keywords:

Assessing the performance of Co-Saliency Detection method using various Deep Neural Networks authors

Mangal

Department of Computer Engineering & Applications, GLA University, Mathura.

Garg

Department of Computer Engineering & Applications, GLA University, Mathura.

Bhatnagar

Department of Computer Engineering & Applications, GLA University, Mathura.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Sun, M., Zhou, Z., Hu, Q., Wang, Z., & Jiang, ...
Zhang, L., Yang, C., Lu, H., Ruan, X., & Yang, ...
Yang, X., Li, S., Ma, J., Yang, J. Y., & ...
Bai, C., Chen, J. N., Huang, L., Kpalma, K., & ...
Zhang, D., Meng, D., & Han, J. (۲۰۱۶).Co-saliency detection via ...
Zhang, D., Fu, H., Han, J., Borji, A., & Li, ...
Wang, Q., Zhang, L., Li, Y., &Kpalma, K. (۲۰۲۰).Overview of ...
Jeong, D. J., Hwang, I., & Cho, N. I. (۲۰۱۸). ...
Fan, D. P., Lin, Z., Ji, G. P., Zhang, D., ...
Fu, H., Cao, X., &Tu, Z. (۲۰۱۳).Cluster-based co-saliency detection. IEEE Transactions ...
Song, H., Liu, Z., Du, H., Sun, G., Le Meur, ...
Ullah, I., Jian, M., Hussain, S., Guo, J., Yu, H., ...
Han, J., Cheng, G., Li, Z., & Zhang, D. (۲۰۱۷).A ...
He, K., Zhang, X., Ren, S., & Sun, J. (۲۰۱۶).Deep ...
Han, J., Quan, R., Zhang, D., &Nie, F. (۲۰۱۷).Robust object ...
Ren, J., Liu, Z., Zhou, X., Sun, G., &Bai, C. ...
Li, L., Liu, Z., & Zhang, J. (۲۰۱۸). Unsupervised image ...
Wei, L., Zhao, S., Bourahla, O. E. F., Li, X., ...
Ye, L., Liu, Z., Li, L., Shen, L., Bai, C., ...
Gupta, A. K., Seal, A., Prasad, M., Khanna, P. (۲۰۲۰). ...
Zhang, K., Li, T., Shen, S., Liu, B., Chen, J., ...
Su, Y., Deng, J., Sun, R., Lin, G., & Wu, ...
نمایش کامل مراجع