Auto-UFSTool: An Automatic Unsupervised Feature Selection Toolbox for MATLAB
Publish Year: 1402
Type: Journal paper
Language: English
View: 140
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADM-11-4_002
Index date: 10 January 2024
Auto-UFSTool: An Automatic Unsupervised Feature Selection Toolbox for MATLAB abstract
Various data analysis research has recently become necessary in to find and select relevant features without class labels using Unsupervised Feature Selection (UFS) approaches. Despite the fact that several open-source toolboxes provide feature selection techniques to reduce redundant features, data dimensionality, and computation costs, these approaches require programming knowledge, which limits their popularity and has not adequately addressed unlabeled real-world data. Automatic UFS Toolbox (Auto-UFSTool) for MATLAB, proposed in this study, is a user-friendly and fully-automatic toolbox that utilizes several UFS approaches from the most recent research. It is a collection of 25 robust UFS approaches, most of which were developed within the last five years. Therefore, a clear and systematic comparison of competing methods is feasible without requiring a single line of code. Even users without any previous programming experience may utilize the actual implementation by the Graphical User Interface (GUI). It also provides the opportunity to evaluate the feature selection results and generate graphs that facilitate the comparison of subsets of varying sizes. It is freely accessible in the MATLAB File Exchange repository and includes scripts and source code for each technique. The link to this toolbox is freely available to the general public on: bit.ly/AutoUFSTool
Auto-UFSTool: An Automatic Unsupervised Feature Selection Toolbox for MATLAB Keywords:
Auto-UFSTool: An Automatic Unsupervised Feature Selection Toolbox for MATLAB authors
Farhad Abedinzadeh Torghabeh
Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Yeganeh Modaresnia
Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Seyyed Abed Hosseini
Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :