Optimizing Hybrid Photocatalytic-ozonation for Offshore Produced Water Treatment

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 127

This Paper With 21 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMAE-15-1_013

تاریخ نمایه سازی: 20 دی 1402

Abstract:

Offshore produced water (OPW), a type of wastewater rich in hazardous compounds such as polycyclic aromatic hydrocarbons (PAHs), requires effective treatment. This study presents a novel methodology utilizing TiO۲ nanoparticles, ultraviolet (UV) lamps, and ozonation for the degradation of phenanthrene (PHE) from OPW. Various factors including UV lamp power (۱۰W-۵۰W), ozone dose (۰.۱ mg/L-۰.۵ mg/L), TiO۲ concentration (۰.۵ g/m²-۲.۱ g/m²), ethanol fraction (۲۵%-۸۵%), pH (۴.۵-۱۰.۵), PHE initial concentration (۵ mg/L-۲۵ mg/L), and treatment time (۱۵ min-۴۵ min) were systematically investigated to understand their impact on PAH degradation in the OPW. The study employs Response Surface Methodology (RSM) for modeling and optimizing PHE removal efficiency. The results contribute to the development of a mathematical model, and through optimization, optimal conditions are proposed to maximize PHE removal efficiency. Experimental implementation of the optimized conditions in a physical model resulted in an impressive ۹۸% PHE removal efficiency. The identified optimal conditions include UV lamp power of ۴۰ W, ozone dose of ۰.۵ mg/L, TiO۲ concentration of ۲ g/m², ethanol fraction of ۲۵%, pH of ۵.۲, initial PHE concentration of ۱۵ mg/L, and a treatment time of ۴۰ min. This optimized approach provides valuable insights for efficient and environmentally friendly treatment of PAHs in OPW, emphasizing on the potential for practical application in soil washing effluent treatment.

Keywords:

Photocatalytic Ozonation , Polycyclic Aromatic Hydrocarbons (PAHs) , Offshore Produced Water (OPW) , Response Surface Methodology (RSM)- , Environmental Sustainability

Authors

Masoud Rabieian

Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

Farhad Qaderi

Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :