سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Designing and Computational Analysis of Chimeric Avian Influenza Antigen: A Yeast-Displayed Universal and Cross-Protective Vaccine Candidate

Publish Year: 1401
Type: Journal paper
Language: English
View: 130

This Paper With 15 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JPSAD-1-1_001

Index date: 10 January 2024

Designing and Computational Analysis of Chimeric Avian Influenza Antigen: A Yeast-Displayed Universal and Cross-Protective Vaccine Candidate abstract

This study describes the development of a cross-protective vaccine candidate against avian influenza virus, which was designed using M2e, a highly preserved antigen. The consensus sequence of M2e was obtained using 31 sequences of avian influenza virus subtypes (H5N8, H5N1, H9N2, and H7N9) isolated from seven avian species in five Asian countries. An adjuvant, a partial sequence of flagellin, was also considered. Two chimeric antigens were designed and virtually cloned and expressed using the PYD1 vector and EBY100 yeast strain. Molecular dynamic simulations were used to assess the stability and conformational features of these antigens. The likelihood of detection by a specific monoclonal antibody, MAb148, was estimated for the designed peptides using docking studies. The second chimeric antigen was more compact and stable than the first design, but it was less detectable by MAb148. In the first design, two of the four desired epitopes ("SLLTEVETP") were exposed, while only a partial sequence of this epitope was detectable in the second design. In contrast to the second chimeric antigen, electrostatic, and binding energies related to the interaction of the first antigen and MAb148 were significantly closer to the positive control. This suggests that epitopes of the first chimeric antigen could be correctly located in the specific paratope of MAb148. In conclusion, the first chimeric antigen exhibits favorable conformational features and epitope-paratope interactions, highlighting its potential as a promising cross-protective vaccine candidate against a range of avian influenza virus subtypes.

Designing and Computational Analysis of Chimeric Avian Influenza Antigen: A Yeast-Displayed Universal and Cross-Protective Vaccine Candidate Keywords:

Designing and Computational Analysis of Chimeric Avian Influenza Antigen: A Yeast-Displayed Universal and Cross-Protective Vaccine Candidate authors

Elyas Mohammadi

Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden

Mohammad Hadi Sekhavati

Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran

Zana Pirkhezranian

Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran

Neda Shafizade

Department of Internal Medicine, Mashhad University of Medical Science, Mashhad, Iran

Samira Dashti

Department of Medical Science, Mashhad University of Medical Science, Mashhad, Iran

Naghmeh Saedi

Department of Animal science, Azad University of Tehran, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Alexander DJ. An overview of the epidemiology of avian influenza. ...
https://doi.org/۱۰.۱۰۱۶/j.vaccine.۲۰۰۶.۱۰.۰۵۱Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic ...
https://doi.org/۱۰.۱۰۱۶/j.vaccine.۲۰۰۷.۰۷.۰۲۷Barnes B, Scott A, Hernandez-Jover M, Toribio J-A, Moloney B, ...
Gubareva LV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. ...
https://doi.org/۱۰.۱۰۱۶/S۰۱۴۰-۶۷۳۶(۹۹)۱۱۴۳۳-۸Wang C, Takeuchi K, Pinto LH, Lamb RA. Ion channel ...
https://doi.org/۱۰.۱۱۲۸/jvi.۶۷.۹.۵۵۸۵-۵۵۹۴.۱۹۹۳Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. ...
https://doi.org/۱۰.۱۱۲۸/mr.۵۶.۱.۱۵۲-۱۷۹.۱۹۹۲Sugrue RJ, Bahadur G, Zambon MC, Hall-Smith M, Douglas AR, ...
https://doi.org/۱۰.۱۰۰۲/j.۱۴۶۰-۲۰۷۵.۱۹۹۰.tb۰۷۵۵۵.xSugrue RJ, Hay AJ. Structural characteristics of the M۲ protein ...
https://doi.org/۱۰.۱۰۱۶/۰۰۴۲-۶۸۲۲(۹۱)۹۰۰۷۵-MHolsinger LJ, Shaughnessy MA, Micko A, Pinto LH, Lamb RA. ...
https://doi.org/۱۰.۱۱۲۸/jvi.۶۹.۲.۱۲۱۹-۱۲۲۵.۱۹۹۵Lamb RA, Zebedee SL, Richardson CD. Influenza virus M۲ protein ...
https://doi.org/۱۰.۱۰۱۶/۰۰۹۲-۸۶۷۴(۸۵)۹۰۲۱۱-۹Fu TM, Freed DC, Horton MS, Fan J, Citron MP, ...
https://doi.org/۱۰.۱۰۱۶/j.virol.۲۰۰۸.۱۱.۰۳۵Wang R, Song A, Levin J, Dennis D, Zhang NJ, ...
https://doi.org/۱۰.۱۰۱۶/j.antiviral.۲۰۰۸.۰۶.۰۰۲Grandea AG, ۳rd, Olsen OA, Cox TC, Renshaw M, Hammond ...
https://doi.org/۱۰.۱۰۷۳/pnas.۰۹۱۱۸۰۶۱۰۷Reid AH, Fanning TG, Janczewski TA, McCall S, Taubenberger JK. ...
https://doi.org/۱۰.۱۱۲۸/JVI.۷۶.۲۱.۱۰۷۱۷-۱۰۷۲۳.۲۰۰۲Mezhenskaya D, Isakova-Sivak I, Rudenko L. M۲e-based universal influenza vaccines: ...
Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, ...
https://doi.org/۱۰.۱۰۱۶/j.vaccine.۲۰۰۷.۱۰.۰۶۲Fan J, Liang X, Horton MS, Perry HC, Citron MP, ...
۲۰۰۴.۰۲.۰۲۱Liu W, Peng Z, Liu Z, Lu Y, Ding J, ...
https://doi.org/۱۰.۱۰۱۶/j.vaccine.۲۰۰۴.۰۵.۰۲۸Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, ...
https://doi.org/۱۰.۱۰۱۶/S۰۲۶۴-۴۱۰X(۰۳)۰۰۰۴۰-۹De Filette M, Min Jou W, Birkett A, Lyons K, ...
https://doi.org/۱۰.۱۰۱۶/j.virol.۲۰۰۵.۰۴.۰۰۴Roberts PC, Lamb RA, Compans RW. The M۱ and M۲ ...
https://doi.org/۱۰.۱۰۰۶/viro.۱۹۹۷.۸۹۱۶Hughey PG, Roberts PC, Holsinger LJ, Zebedee SL, Lamb RA, ...
Zebedee SL, Lamb RA. Influenza A virus M۲ protein: monoclonal ...
https://doi.org/۱۰.۱۱۲۸/jvi.۶۲.۸.۲۷۶۲-۲۷۷۲.۱۹۸۸Kang S-M, Kim M-C, W Compans R. Virus-like particles as ...
https://doi.org/۱۰.۱۵۸۶/erv.۱۲.۷۰Slepushkin VA, Katz JM, Black RA, Gamble WC, Rota PA, ...
https://doi.org/۱۰.۱۰۱۶/۰۲۶۴-۴۱۰X(۹۵)۹۲۷۷۷-YNeirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, ...
https://doi.org/۱۰.۱۰۳۸/۱۳۴۸۴Tompkins SM, Zhao ZS, Lo CY, Misplon JA, Liu T, ...
https://doi.org/۱۰.۳۲۰۱/eid۱۳۰۳.۰۶۱۱۲۵Song JM, Wang BZ, Park KM, Van Rooijen N, Quan ...
Hase CC. Analysis of the role of flagellar activity in ...
https://doi.org/۱۰.۱۰۹۹/۰۰۲۲۱۲۸۷-۱۴۷-۴-۸۳۱Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, ...
https://doi.org/۱۰.۱۰۳۸/۳۵۰۷۴۱۰۶Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. ...
Mizel SB, Snipes JA. Gram-negative flagellin-induced self-tolerance is associated with ...
https://doi.org/۱۰.۱۰۷۴/jbc.M۲۰۱۷۶۲۲۰۰Mizel SB, Bates JT. Flagellin as an adjuvant: cellular mechanisms ...
https://doi.org/۱۰.۴۰۴۹/jimmunol.۱۰۰۲۱۵۶Liu G, Song L, Reiserova L, Trivedi U, Li H, ...
۲۰۱۲.۰۹.۰۱۳Bargieri DY, Rosa DS, Braga CJ, Carvalho BO, Costa FT, ...
https://doi.org/۱۰.۱۰۱۶/j.vaccine.۲۰۰۸.۰۸.۰۷۰McDonald WF, Huleatt JW, Foellmer HG, Hewitt D, Tang J, ...
https://doi.org/۱۰.۱۰۸۶/۵۱۷۶۱۳Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, ...
Weimer ET, Ervin SE, Wozniak DJ, Mizel SB. Immunization of ...
https://doi.org/۱۰.۱۰۱۶/j.vaccine.۲۰۰۹.۰۸.۰۸۰Honko AN, Sriranganathan N, Lees CJ, Mizel SB. Flagellin is ...
Ben-Yedidia T, Abel L, Arnon R, Globerson A. Efficacy of ...
https://doi.org/۱۰.۱۰۱۶/S۰۰۴۷-۶۳۷۴(۹۸)۰۰۰۴۵-۱Saelens X, Vanlandschoot P, Martinet W, Maras M, Neirynck S, ...
https://doi.org/۱۰.۱۰۴۶/j.۱۴۳۲-۱۳۲۷.۱۹۹۹.۰۰۱۵۰.xStubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, ...
https://doi.org/۱۰.۱۰۳۸/۸۷۹۷۴Tamaru Y, Ohtsuka M, Kato K, Manabe S, Kuroda K, ...
https://doi.org/۱۰.۱۰۲۱/bp۰۶۰۱۳۰xShibasaki S, Aoki W, Nomura T, Miyoshi A, Tafuku S, ...
https://doi.org/۱۰.۱۱۱۱/۲۰۴۹-۶۳۲X.۱۲۰۶۸Shibasaki S, Ueda M, Ye K, Shimizu K, Kamasawa N, ...
https://doi.org/۱۰.۱۰۰۷/s۰۰۲۵۳۰۱۰۰۷۶۷Ye K, Shibasaki S, Ueda M, Murai T, Kamasawa N, ...
Boder ET, Wittrup KD. Yeast surface display for directed evolution ...
https://doi.org/۱۰.۱۰۳۸/nbt۰۶۹۷-۵۵۳Boder ET, Wittrup KD. Yeast surface display for screening combinatorial ...
https://doi.org/۱۰.۱۰۱۶/S۰۰۷۶-۶۸۷۹(۰۰)۲۸۴۱۰-۳Chen I, Dorr BM, Liu DR. A general strategy for ...
https://doi.org/۱۰.۱۰۷۳/pnas.۱۱۰۱۰۴۶۱۰۸Song L, Zhang Y, Yun NE, Poussard AL, Smith JN, ...
https://doi.org/۱۰.۱۰۱۶/j.vaccine.۲۰۰۹.۰۷.۰۶۰Cho KJ, Schepens B, Moonens K, Deng L, Fiers W, ...
https://doi.org/۱۰.۱۱۲۸/JVI.۰۲۱۰۵-۱۵Lei H, Jin S, Karlsson E, Schultz-Cherry S, Ye K. ...
https://doi.org/۱۰.۱۱۵۵/۲۰۱۶/۴۱۳۱۳۲۴Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD. ...
https://doi.org/۱۰.۱۰۹۳/protein/۱۰.۱۱.۱۳۰۳Cho KJ, Schepens B, Seok JH, Kim S, Roose K, ...
https://doi.org/۱۰.۱۱۲۸/JVI.۰۲۵۷۶-۱۴Zhang Y. I-TASSER server for protein ۳D structure prediction. BMC ...
https://doi.org/۱۰.۱۱۸۶/۱۴۷۱-۲۱۰۵-۹-۴۰Berendsen HJ, van der Spoel D, van Drunen R. GROMACS: ...
https://doi.org/۱۰.۱۰۱۶/۰۰۱۰-۴۶۵۵(۹۵)۰۰۰۴۲-ELindahl E, Hess B, Van Der Spoel D. GROMACS ۳.۰: ...
https://doi.org/۱۰.۱۰۰۷/s۰۰۸۹۴۰۱۰۰۰۴۵Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, ...
Berendsen H, Postma JPM, van Gunsteren W, Hermans J. Interaction ...
https://doi.org/۱۰.۱۰۰۷/۹۷۸-۹۴-۰۱۵-۷۶۵۸-۱_۲۱Parrinello MRA, Rahman AJ. Polymorphic Transitions in Single Crystals: A ...
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity ...
https://doi.org/۱۰.۱۰۶۳/۱.۲۴۰۸۴۲۰Hess B, Bekker H, Berendsen H, G. E. M. Fraaije ...
https://doi.org/۱۰.۱۰۰۲/(SICI)۱۰۹۶-۹۸۷X(۱۹۹۷۰۹)۱۸:۱۲<۱۴۶۳::AID-JCC۴>۳.۰.CO;۲-HHumphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. ...
https://doi.org/۱۰.۱۰۱۶/۰۲۶۳-۷۸۵۵(۹۶)۰۰۰۱۸-۵Kumari R, Kumar R, Lynn A. g_mmpbsaa GROMACS tool for ...
https://doi.org/۱۰.۱۰۲۱/ci۵۰۰۰۲۰mShuid AN, Kempster R, McGuffin LJ. ReFOLD: a server for ...
https://doi.org/۱۰.۱۰۹۳/nar/gkx۲۴۹Brenke R, Hall DR, Chuang GY, Comeau SR, Bohnuud T, ...
DeLano WL. PyMOL: An Open-Source Molecular Graphics Tool۲۰۰۲. ۸۲-۹۲ p ...
Nili H, Asasi K. Avian influenza (H۹N۲) outbreak in Iran. ...
Javadmanesh A, Mohammadi E, Mousavi Z, Azghandi M, Tanhaiean A. ...
https://doi.org/۱۰.۱۰۳۸/s۴۱۵۹۸-۰۲۱-۹۰۳۱۳-۴Wang W-C, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards ...
Salleh AB, Rahim A, Rahman R, Leow TC, Basri M. ...
نمایش کامل مراجع