Comparative Analysis of ARIMA, SARIMAX, and Random Forest Models for Forecasting Future GDP of the UK in Relation to Unemployment Rate
Publish place: International Journal of Management, Accounting and Economics (IJMAE)، Vol: 10، Issue: 11
Publish Year: 1402
Type: Journal paper
Language: English
View: 119
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_IJMAE-10-11_003
Index date: 15 January 2024
Comparative Analysis of ARIMA, SARIMAX, and Random Forest Models for Forecasting Future GDP of the UK in Relation to Unemployment Rate abstract
Accurate forecasting of Gross Domestic Product (GDP) is crucial for policymakers, businesses, and investors. This research explores the use of SARIMAX, ARIMA, and Random Forest models to forecast GDP in the UK. The study investigates the relationship between GDP and the unemployment rate, considering historical GDP and unemployment data collected from the Office of National Statistics (ONS). Both SARIMAX and ARIMA models indicate a negative relationship between GDP and the unemployment rate, although the coefficients are not statistically significant. On the other hand, the Random Forest model has shown its supremacy when it comes to the accuracy of prediction. The results suggest that other factors may have a stronger influence on GDP fluctuations based on the empirical findings. Future research should consider additional variables and advanced modelling techniques to further explore the relationship between GDP and the unemployment rate, contributing to a deeper understanding of the UK economy and informing effective economic management.
Comparative Analysis of ARIMA, SARIMAX, and Random Forest Models for Forecasting Future GDP of the UK in Relation to Unemployment Rate Keywords:
Comparative Analysis of ARIMA, SARIMAX, and Random Forest Models for Forecasting Future GDP of the UK in Relation to Unemployment Rate authors
Md Hossain
Business School, University of Huddersfield, Huddersfield, United Kingdom
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :