Developing a Multi-channel Beamformer by Enhancing Spatially Constrained ICA for Recovery of Correlated EEG Sources

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 35

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JBPE-11-2_010

تاریخ نمایه سازی: 30 دی 1402

Abstract:

Background: Brain source imaging based on electroencephalogram (EEG) data aims to recover the neuron populations’ activity producing the scalp potentials. This procedure is known as the EEG inverse problem. Recently, beamformers have gained a lot of consideration in the EEG inverse problem. Objective: Beamformers lack acceptable performance in the case of correlated brain sources. These sources happen when some regions of the brain have simultaneous or correlated activities such as auditory stimulation or moving left and right extremities of the body at the same time. In this paper, we have developed a multichannel beamformer robust to correlated sources. Material and Methods: In this simulation study, we have looked at the problem of brain source imaging and beamforming from a blind source separation point of view. We focused on the spatially constraint independent component analysis (scICA) algorithm, which generally benefits from the pre-known partial information of mixing matrix, and modified the steps of the algorithm in a way that makes it more robust to correlated sources. We called the modified scICA algorithm Multichannel ICA based EEG Beamformer (MIEB). Results: We evaluated the proposed algorithm on simulated EEG data and compared its performance quantitatively with three algorithms: scICA, linearly-constrained minimum-variance (LCMV) and Dual-Core beamformers; it is considered that the latter is specially designed to reconstruct correlated sources. Conclusion: The MIEB algorithm has much better performance in terms of normalized mean squared error in recovering the correlated/uncorrelated sources both in noise free and noisy synthetic EEG signals. Therefore, it could be used as a robust beamformer in recovering correlated brain sources.

Authors

Nasser Samadzadehaghdam

PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran

Bahador Makkiabadi

PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran

Ehsan Eqlimi

PhD Candidate, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran

Fahimeh Mohagheghian

PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Hassan Khajehpoor

PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran

Mohammad Hossein Harirchian

MD, Iranian Centre of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Acar ZA, Makeig S. Neuroelectromagnetic forward head modeling toolbox. J ...
  • Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq ...
  • Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, ...
  • Pascual-Marqui RD. Review of methods for solving the EEG inverse ...
  • Mosher JC, Lewis PS, Leahy RM. Multiple dipole modeling and ...
  • Sekihara K, Nagarajan SS. Adaptive spatial filters for electromagnetic brain ...
  • Jonmohamadi Y, Poudel G, Innes C, Weiss D, Krueger R, ...
  • Murzin V, Fuchs A, Scott Kelso JA. Detection of correlated ...
  • Diwakar M, Huang MX, Srinivasan R, Harrington DL, Robb A, ...
  • Georgieva P, Bouaynaya N, Silva F, Mihaylova L, Jain LC. ...
  • Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, ...
  • Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A. ...
  • Sekihara K, Nagarajan SS. Electromagnetic brain imaging: a bayesian perspective. ...
  • Sekihara K, Nagarajan SS, Poeppel D, Marantz A. Performance of ...
  • James CJ, Gibson OJ. Temporally constrained ICA: an application to ...
  • Hesse CW, James CJ. On semi-blind source separation using spatial ...
  • De Vos M, De Lathauwer L, Van Huffel S. Spatially ...
  • Cichocki A, Amari S-I. Adaptive blind signal and image processing: ...
  • Oja H, Nordhausen K. Independent component analysis. Encyclopedia of Environmetrics. ...
  • Cardoso J-F, Souloumiac A. Blind beamforming for non-Gaussian signals. IEE ...
  • Belouchrani A, Abed-Meraim K, Cardoso J-F, Moulines E. A blind ...
  • Hyvarinen A. Fast and robust fixed-point algorithms for independent component ...
  • Roberts SJ. Independent component analysis: source assessment and separation, a ...
  • Golub GH, Van Loan CF. Matrix computations. ۴th ed. Baltimore: ...
  • Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open ...
  • Assecondi S, Ostwald D, Bagshaw AP. Reliability of information-based integration ...
  • نمایش کامل مراجع