A New Method to Improve the Performance of Deep Neural Networks in Detecting P۳۰۰ Signals: Optimizing Curvature of Error Surface Using Genetic Algorithm
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 178
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-11-3_011
تاریخ نمایه سازی: 30 دی 1402
Abstract:
Background: Deep neural networks have been widely used in detection of P۳۰۰ signal in Brain Machine Interface (BMI) systems which are rely on Event-Related Potentials (ERPs) (i.e. P۳۰۰ signals). Such networks have high curvature variation in their error surface hampering their favorable performance. Therefore, the variations in curvature of the error surface must be minimized to improve the performance of these networks in detecting P۳۰۰ signals. Objective: The aim of this paper is to introduce a method for minimizing the curvature of the error surface during training Convolutional Neural Network (CNN). The curvature variation of the error surface is highly dependent on model parameters of deep neural network; therefore, we try to minimize this curvature by optimizing the model parameters.Material and Methods: In this experimental study an attempt is made to tune the CNN parameters affecting the curvature of its error surface in order to obtain the best possible learning. For achieving this goal, Genetic Algorithm is utilized to optimize the above parameters in order to minimize the curvature variations. Results: The performance of the proposed algorithm was evaluated on EPFL dataset. The obtained results demonstrated that the proposed method detected the P۳۰۰ signals with maximally ۹۸.۹۱% classification accuracy and ۹۸.۵۴% True Positive Ratio (TPR). Conclusion: The obtained results showed that using genetic algorithm for minimizing curvature of the error surface in CNN increased its accuracy in parallel with decreasing the variance of the results. Consequently, it may be concluded that the proposed method has considerable potential to be used as P۳۰۰ detection module in BMI applications.
Keywords:
Authors
- -
PhD, Associate professor in Biomedical Engineering, Department of Biomedical Engineering, Iranian Research Organization for Science and Technology, Tehran, Iran
- -
MSc, Department of Computer Engineering, Alzahra University, Tehran, Iran
- -
PhD, Associate professor in Computer Engineering, Department of Computer Engineering, Alzahra University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :