0-1 Mathematical Programming Models For Laparoscopic Activity Recognition
Publish place: 9th International Industrial Engineering Conference
Publish Year: 1391
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,712
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IIEC09_335
تاریخ نمایه سازی: 26 اسفند 1391
Abstract:
Laparoscopy is called minimally invasive surgery in which laparoscope displays the body inside and records the pictures of inside the patient's body as a video stream. Activity recognition is necessary and helpful for annotation and tagging of laparoscopic videos, easy retrieval of laparoscopic video clips for training the surgeons and rare event analysis. Many previous studies consider single activity recognition in a short video clip. A few researches study recognition of a sequence of activities in a long video. Despite of other domains, there are some relations between laparoscopic activities. Identification and extraction of these relations can improve the recognition accuracy, specifically when the same activity can be performed with different styles by different persons. The purpose of this research is to introduce a model of activity recognition in laparoscopic videos considering the activity relationships. At first global and local motion parameters are extracted from video. After compensating camera motion, local motion time series is segmented temporally with sliding windows approach. Then each segment is assigned an activity label considering the relations between activities. Therefore 0-1 mathematical programming models are introduced for laparoscopic activity sequence recognition. Activity recognition with mathematical programming model is advantageous because any activity relationship can be inserted into the model.
Keywords:
Authors
Toktam Khatibi
Department of Industrial Engineering, Tarbiat Modares
Pejman Shadpour
University of Medical Sciences, Tehran, ۱۹۶۹۷-۱۴۷۱۳, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :