Transfer Learning-Based Automatic Detection of Coronavirus Disease ۲۰۱۹ (COVID-۱۹) from Chest X-ray Images
Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 171
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-10-5_003
تاریخ نمایه سازی: 30 دی 1402
Abstract:
Background: Coronavirus disease ۲۰۱۹ (COVID-۱۹) is an emerging infectious disease and global health crisis. Although real-time reverse transcription polymerase chain reaction (RT-PCR) is known as the most widely laboratory method to detect the COVID-۱۹ from respiratory specimens. It suffers from several main drawbacks such as time-consuming, high false-negative results, and limited availability. Therefore, the automatically detect of COVID-۱۹ will be required. Objective: This study aimed to use an automated deep convolution neural network based pre-trained transfer models for detection of COVID-۱۹ infection in chest X-rays.Material and Methods: In a retrospective study, we have applied Visual Geometry Group (VGG)-۱۶, VGG-۱۹, MobileNet, and InceptionResNetV۲ pre-trained models for detection COVID-۱۹ infection from ۳۴۸ chest X-ray images. Results: Our proposed models have been trained and tested on a dataset which previously prepared. The all proposed models provide accuracy greater than ۹۰.۰%. The pre-trained MobileNet model provides the highest classification performance of automated COVID-۱۹ classification with ۹۹.۱% accuracy in comparison with other three proposed models. The plotted area under curve (AUC) of receiver operating characteristics (ROC) of VGG۱۶, VGG۱۹, MobileNet, and InceptionResNetV۲ models are ۰.۹۲, ۰.۹۱, ۰.۹۹, and ۰.۹۷, respectively. Conclusion: The all proposed models were able to perform binary classification with the accuracy more than ۹۰.۰% for COVID-۱۹ diagnosis. Our data indicated that the MobileNet can be considered as a promising model to detect COVID-۱۹ cases. In the future, by increasing the number of samples of COVID-۱۹ chest X-rays to the training dataset, the accuracy and robustness of our proposed models increase further.
Keywords:
Authors
R Mohammadi
MSc, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
M Salehi
MSc, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
H Ghaffari
MSc, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
A A Rohani
MSc, Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
R Reiazi
PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :