Independent Component Analysis with Functional Neuroscience Data Analysis
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 138
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-13-2_008
تاریخ نمایه سازی: 30 دی 1402
Abstract:
Background: Independent Component Analysis (ICA) is the most common and standard technique used in functional neuroscience data analysis. Objective: In this study, two of the significant functional brain techniques are introduced as a model for neuroscience data analysis.Material and Methods: In this experimental and analytical study, Electroencephalography (EEG) signal and functional Magnetic Resonance Imaging (fMRI) were analyzed and managed by the developed tool. The introduced package combines Independent Component Analysis (ICA) to recognize significant dimensions of the data in neuroscience. This study combines EEG and fMRI in the same package for analysis and comparison results. Results: The findings of this study indicated the performance of the ICA, which can be dealt with the presented easy-to-use and learn intuitive toolbox. The user can deal with EEG and fMRI data in the same module. Thus, all outputs were analyzed and compared at the same time; the users can then import the neurofunctional datasets easily and select the desired portions of the functional biosignal for further processing using the ICA method. Conclusion: A new toolbox and functional graphical user interface, running in cross-platform MATLAB, was presented and applied to biomedical engineering research centers.
Keywords:
Electroencephalogram , Functional Magnetic Resonance Imaging (fMRI) , Graphical User Interface (GUI) , Independent Component Analysis (ICA) , Functional Neuroscience
Authors
Hadeel K Aljobouri
Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, IRAQ
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :