Protection and optimization of equipment from So۲ and So۳

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 56

This Paper With 26 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAA-15-2_028

تاریخ نمایه سازی: 14 بهمن 1402

Abstract:

Corrosion that occurs in concentrated sulfuric acid production plants causes damage to equipment, pipes, tanks, and pumps, which affects the cost of maintenance time, which causes production stoppage and danger to workers due to the high acid concentration. The researchers used several types of alloys that help sustain production with different protection methods. Some of them are expensive, and some are highly corrosive, such as iron alloys, nickel alloys, polymers, and others in factory equipment. The current work is devoted to obtaining an alloy with mechanical and corrosive properties comparable to what is used in the concentrated sulfuric acid production plant in Iraq and the world to be used in the most important components of pipes and tanks to preserve the concentrated acid in the factory. Various alloys of a group of elements with an iron base were used and produced by the powders metallurgy method to achieve this purpose. Mechanical, corrosion tests and inspection (hardness, microstructure, dry slip corrosion, wear/abrasion, slight immersion, and Tafel testing were performed, XRD, EDX, SEM)The alloys used in this research are:\mathrm{A} ۱(۱ \% \mathrm{Cr}+۱ \% \mathrm{Ni}+۱ \% \mathrm{Mo}+۰.۵ \% \mathrm{Cu}+۰.۵ \% \mathrm{Si}+۰.۱ \% \mathrm{~W}+۰.۱ \% \mathrm{Ti}+۱ \% \mathrm{Mn}) \mathrm{A} ۲(۱ \% \mathrm{Cr}+۱ \% \mathrm{Ni}+۱.۵ \% \mathrm{Mo}+۱.۵ \% \mathrm{Cu}+۱ \% \mathrm{Si}+۰.۲ \% \mathrm{~W}+۰.۲ \% \mathrm{Ti}+۱ \% \mathrm{Mn}) \mathrm{A} ۳(۲ \% \mathrm{Cr}+۲ \% \mathrm{Ni}+۲ \% \mathrm{Mo}+۲.۵ \% \mathrm{Cu}+۰.۵ \% \mathrm{Si}+۰.۲ \% \mathrm{~W}+۰.۲ \% \mathrm{Ti}+۲ \% \mathrm{Mn}) \mathrm{A} ۴(۲ \% \mathrm{Cr}+۲ \% \mathrm{Ni}+۱ \% \mathrm{Mo}+۳.۵ \% \mathrm{Cu}+۱ \% \mathrm{Si}+۰.۲ \% \mathrm{~W}+۰.۳ \% \mathrm{Ti}+۲ \% \mathrm{Mn}) \mathrm{A} ۵(۳ \% \mathrm{Cr}+۳.۵ \% \mathrm{Ni}+۱.۵ \% \mathrm{Mo}+۴ \% \mathrm{Cu}+۰.۵ \% \mathrm{Si}+۰.۵ \% \mathrm{~W}+۰.۵ \% \mathrm{Ti}+۳ \% \mathrm{Mn}) \mathrm{A} ۶(۳ \% \mathrm{Cr}+۳ \% \mathrm{Ni}+۲ \% \mathrm{Mo}+۳ \% \mathrm{Cu}+۰.۵ \% \mathrm{Si}+۱ \% \mathrm{~W}+۱ \% \mathrm{Ti}+۳ \% \mathrm{Mn}) \mathrm{A} ۷(۴ \% \mathrm{Cr}+۴ \% \mathrm{Ni}+۱ \% \mathrm{Mo}+۴ \% \mathrm{Cu}+۱ \% \mathrm{Si}+۲ \% \mathrm{~W}+۱.۵ \% \mathrm{Ti}+۲ \% \mathrm{Mn}) \mathrm{A} ۸(۵ \% \mathrm{Cr}+۵ \% \mathrm{Ni}+۱.۵ \% \mathrm{Mo}+۳ \% \mathrm{Cu}+۱ \% \mathrm{Si}+۱.۵ \% \mathrm{~W}+۲ \% \mathrm{Ti}+۳ \% \mathrm{Mn}) \mathrm{A} ۹(۵ \% \mathrm{Cr}+۵ \% \mathrm{Ni}+۲ \% \mathrm{Mo}+۴ \% \mathrm{Cu}+۰.۵ \% \mathrm{Si}+۲ \% \mathrm{~W}+۳ \% \mathrm{Ti}+۳ \% \mathrm{Mn}) \mathrm{A} ۱۰(۵ \% \mathrm{Cr}+۵ \% \mathrm{Ni}+۱.۵ \% \mathrm{Mo}+۳ \% \mathrm{Cu}+۱ \% \mathrm{Si}+۳ \% \mathrm{~W}+۲ \% \mathrm{Ti}+۲ \% \mathrm{Mn})Compared to the reference samples, an increase in corrosion resistance, hardness, and wear was observed in A۹ and A۱۰ alloy. The corrosion rate (corrosion/corrosion) of the alloy improved by a factor of (۴۰ to ۹۹) % compared to the reference samples (carbon steel, stainless steel ۳۰۴, alloy ۳۱۰). / ۳۱۰S / ۳۱۰H), and A۹, A۱۰ compared to (ZERON, ۱۰۰ alloys Sandvik SX, ZECOR, SARAMET ۲۳ and ۳۵, improving (۱۳%) A۹ and (۰.۸%) A۱۰. In simple immersion, the primary carbon steel alloys suffered from corrosion compared to improving the alloy (A۱ to A۱۰); the improvement percentage was more than (۹۹) \%. Alloys (ZERON, ZECOR, Stainless Steel ۳۰۴l), the improvement percentage in alloys only (A۹, A۱۰) from (۲۴ to ۵۵) %. The polarization test (Tafel) in concentrated acid on the alloy (A۹ to A۱۰) showed that the corrosion resistance of concentrated sulfuric acid was much better than that of carbon steel with a very high percentage. The improvement was about (۹۹) % compared to carbon steel. Alloy A۹ was the best in improving the resistance of carbon steel. Corrosion in all equipment and parts of the concentrated sulfuric acid plant (۹۸%).

Authors

Ahmed Kamil Ghadeer

Department of Construction and Projects, University Presidency, Thi-Qar of University, Iraq

Ekbal M. Seed

Department of Metallurgical Engineering, College of Materials Engineering, University of Babylon, Iraq

Hayder A.H. ALguboori

Department of Metallurgical Engineering, College of Materials Engineering, University of Babylon, Iraq

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • A. Abu-Oqail, M. Ghanim, M. El-Sheikh, and A. El-Nikhaily, Effects ...
  • S. Acid, H. Acid, H. Acid, and P. Acid, Corrosion ...
  • J.B. Bacalhau and C.R.M Afonso, Effect of Ni addition on ...
  • O. Bergman, Key aspects of sintering powder metallurgy steel pre-alloyed ...
  • W.L. Bevilaqua, J. Epp, H. Meyer, A. Da Silva Rocha, ...
  • H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed, Stress ...
  • Y-.S. Choi, S. Nesic, and S. Ling, Effect of H۲S ...
  • A.P. Coldren and J.L. Mihelich, Acicular ferrite HSLA steels for ...
  • P. Crook, Corrosion characteristics of the wrought Ni-Cr-Mo alloys, Mater. ...
  • K. Edalati and Z. Horita, Significance of homologous temperature in ...
  • Y. Guo, Y. Zou, Y. Zheng, Y. Wang, X. Liu, ...
  • I.T. Hong and C.H. Koo, Antibacterial properties, corrosion resistance and ...
  • R. Hossain, F. Pahlevani, and V. Sahajwalla, Effect of small ...
  • K. Kardelen, Investigation of pitting corrosion morphology of St ۳۷ ...
  • S.-J. Lee, J. Han, S. Lee, S.-H. Kang, S.-M. Lee, ...
  • B. Liscic, H.M. Tensi, L.C.F. Canale, and G.E. Totten, Quenching ...
  • S. Lowell, J.E. Shields, M.A. Thomas, and M. Thommes, Characterization ...
  • P. Rajeev, A.O. Surendranathan, and C.S.N. Murthy, Corrosion mitigation of ...
  • M.A. Razzak, Heat treatment and effects of Cr and Ni ...
  • R.F. Santos, A.M. Rocha, A.C. Bastos, J.P. Cardoso, F. Rodrigues, ...
  • M. Shamsuddin and H.Y. Sohn, Constitutive topics in physical chemistry ...
  • L.L. Shreir, Corrosion: Metal/Environment Reactions, Newnes, ۲۰۱۳ ...
  • M. Soleimani, H. Mirzadeh, and C. Dehghanian, Effect of grain ...
  • C. Stampfl, M.V. Ganduglia-Pirovano, K. Reuter, and M. Scheffler, Catalysis ...
  • S.B. Sternowski, G.E. O’Donnell, and L. Looney, Effect of particle ...
  • H.-H. Strehblow and P. Marcus, Fundamentals of corrosion, Corrosion Mech. ...
  • G.E. Totten, C.E. Bates, and N.A. Clinton, Handbook of Quenchants ...
  • G.S. Upadhyaya, Powder metallurgy technology, Cambridge International Science Publishing, ۱۹۹۷ ...
  • S. Vock, B. Kloden, A. Kirchner, T. Weisgarber, and B. ...
  • B.I. Voronenko, Austenitic-ferritic stainless steels: A state-of-the-art review, Metal Sci. ...
  • G. Voyiadjis and B. Deliktas, Modeling of strengthening and softening ...
  • نمایش کامل مراجع