Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method
Publish place: Journal of Optoelectronical Nanostructures، Vol: 1، Issue: 2
Publish Year: 1395
Type: Journal paper
Language: English
View: 113
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JOPN-1-2_006
Index date: 14 February 2024
Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method abstract
We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the finite difference method, the Dirac equations of disordered graphene, reduce to the discrete matrix equation. The discrete matrix equation is solved by direct and Green’s function methods. In this method, geometry of disorder plays an important role. This method allows for an amenable inclusion of several disorder mechanisms at the microscopic level. The effect of impurity on the transmission probability and conductivity are obtained, using the electronic transport wave function. The results show that, for the conductance, geometry plays an important role. In addition, by transmission probability and using Landau formula, the Fano factor is investigated.
Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method Keywords:
Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method authors
Marjan Jafari
Department of physics, Faculty of science, Imam Khomeini International University, Qazvin, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :