سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Densification-crystallization behavior of biodegradable copper-doped modified 45S5 glasses

Publish Year: 1402
Type: Journal paper
Language: English
View: 110

This Paper With 8 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_SYNSINT-3-3_006

Index date: 16 February 2024

Densification-crystallization behavior of biodegradable copper-doped modified 45S5 glasses abstract

In the current work, modified 45S5 glasses containing different amounts of copper oxide (1, 3, and 5 weight ratios) were prepared using melting procedure and characterized for their physical properties after sintering at various temperatures. Characterization of the copper doped glasses was performed using various analytical techniques, including X-ray diffractometry, differential thermal analysis, and scanning electron microscopy. To this purpose, a systematic study was conducted on densification-crystallization of the copper doped glasses and optimizing sintering temperature. Differential thermal analysis revealed weak exothermic peaks located above 800 °C, corresponding to the crystallization temperature (Tc) of the studied glasses. This analysis suggests that copper oxide has a limited effect on the thermal properties of the modified 45S5 glasses. Densification behavior of glass specimens was studied at temperatures ranging from 600 to 850 °C. The optimal densification temperature was found to be 650 °C, respectively. The results indicated that the presence of copper ions in the structure of studied glasses results in the formation of porous structures after sintering. It seems that copper ions generate oxygen gas during sintering and promote the formation of a cellular foam structures.In the current work, modified 45S5 glasses containing different amounts of copper oxide (1, 3, and 5 weight ratios) were prepared using melting procedure and characterized for their physical properties after sintering at various temperatures. Characterization of the copper doped glasses was performed using various analytical techniques, including X-ray diffractometry, differential thermal analysis, and scanning electron microscopy. To this purpose, a systematic study was conducted on densification-crystallization of the copper doped glasses and optimizing sintering temperature. Differential thermal analysis revealed weak exothermic peaks located above 800 °C, corresponding to the crystallization temperature (Tc) of the studied glasses. This analysis suggests that copper oxide has a limited effect on the thermal properties of the modified 45S5 glasses. Densification behavior of glass specimens was studied at temperatures ranging from 600 to 850 °C. The optimal densification temperature was found to be 650 °C, respectively. The results indicated that the presence of copper ions in the structure of studied glasses results in the formation of porous structures after sintering. It seems that copper ions generate oxygen gas during sintering and promote the formation of a cellular foam structures.

Densification-crystallization behavior of biodegradable copper-doped modified 45S5 glasses Keywords:

Densification-crystallization behavior of biodegradable copper-doped modified 45S5 glasses authors