سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Comparative Adsorption Study of Functionalized Magnetite and Maghemite Nanoparticles Coated with CTAB Surfactant for Efficient Chromium Removal from Wastewater

Publish Year: 1403
Type: Journal paper
Language: English
View: 113

This Paper With 17 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JWENT-9-1_005

Index date: 17 February 2024

Comparative Adsorption Study of Functionalized Magnetite and Maghemite Nanoparticles Coated with CTAB Surfactant for Efficient Chromium Removal from Wastewater abstract

In this study, maghemite and magnetite nanoparticles were functionalized with cetyl trimethyl ammonium bromide(CTAB) surfactants, in order to obtain effective chromium removal from wastewater. X-ray diffractometry (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectrophotometry (FTIR) were used to characterize the functionalized nanoparticles. Various parameters, including pH, initial chromium concentration, added salt, and adsorbent dose, were evaluated in batch experiments to evaluate chromium removal efficiency. Adsorbent dose and chromium ions show a synergistic relationship with pH and the chemical and electrostatic interactions between cationic surfactant and negatively charged Cr(VI) ions. In both types of functionalized nanoparticles, Cr(VI) was efficiently removed at low pH values with CTAB@MNPs, but the pH increased negatively impacted the removal process. Additionally, Fe3O4@CTAB mainly adsorbs chromium chemically, reducing Cr(VI) to Cr(III), with less impact from competitive ions compared with γ-Fe2O3@CTAB.At pH = 2, adsorbent dose = 5 g/L, and initial chromium concentration = 1 mg/L, maghemite@CTAB achieved a high chromium removal efficiency of 95%. In contrast, magnetite@CTAB achieved a chromium removal efficiency of 95.77% in 7 minutes and 30 seconds at pH = 4, adsorbent dose = 12 g/L, and initial chromium concentration = 98 mg/L. Notably, magnetite outperformed maghemite by a factor of 100 in chromium elimination, which can be attributed to the presence of two adsorption mechanisms, chemical and physisorption, in magnetite nanoparticles, whereas maghemite only had physisorption.

Comparative Adsorption Study of Functionalized Magnetite and Maghemite Nanoparticles Coated with CTAB Surfactant for Efficient Chromium Removal from Wastewater Keywords:

Maghemite nanoparticles , Magnetite nanoparticles , Cetyl trimethyl ammonium bromide (CTAB) surfactants , Chromium removal , Adsorption efficiency

Comparative Adsorption Study of Functionalized Magnetite and Maghemite Nanoparticles Coated with CTAB Surfactant for Efficient Chromium Removal from Wastewater authors

Mohamed Naous

Department of Sciences and Technology, Faculty of Applied Sciences, Ibn Khaldoun University of Tiaret, Tiare ۱۴۰۰۰, Algeria

Ahmed Halfadji

Department of Sciences and Technology, Faculty of Applied Sciences, Ibn Khaldoun University of Tiaret, Tiare ۱۴۰۰۰, Algeria

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
P. Sharma, S.P. Singh, S.K. Parakh, Y.W. Tong, Health hazards ...
https://doi.org/۱۰.۱۰۸۰/۲۱۶۵۵۹۷۹.۲۰۲۲.۲۰۳۷۲۷۳[۲] S. Ambika, M. Kumar, L. Pisharody, M. Malhotra, G. ...
https://doi.org/۱۰.۱۰۱۶/j.cej.۲۰۲۲.۱۳۵۷۱۶[۳] C. Oze, S. Fendorf, D.K. Bird, R.G. Coleman, Chromium ...
https://doi.org/۱۰.۲۷۴۷/۰۰۲۰-۶۸۱۴.۴۶.۲.۹۷[۴] D. Traoré, A. Beauvais, F. Chabaux, C. Peiffert, J.-C. ...
https://doi.org/۱۰.۲۱۳۸/am.۲۰۰۸.۲۶۰۵[۵] A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. ...
https://doi.org/۱۰.۱۰۱۶/j.cej.۲۰۱۵.۱۰.۱۰۵[۶] A. Saha, P. Mukherjee, K. Roy, K. Sen, T. ...
https://doi.org/۱۰.۵۲۷۵۶/ijerr.۲۰۲۲.v۲۷.۰۰۲[۷] M. Adams, A. Ghaly, Maximizing sustainability of the Costa ...
https://doi.org/۱۰.۱۰۱۶/j.jclepro.۲۰۰۶.۰۸.۰۱۳[۸] R. Eizi, T.R. Bastami, V. Mahmoudi, A. Ayati, H. ...
https://doi.org/۱۰.۱۰۱۶/j.jtice.۲۰۲۳.۱۰۴۸۴۴[۹] A.M. Muliwa, T.Y. Leswifi, M.S. Onyango, A. Maity, Magnetic ...
https://doi.org/۱۰.۱۰۱۶/j.seppur.۲۰۱۵.۱۲.۰۲۱[۱۰] L. Joseph, B.-M. Jun, J.R. Flora, C.M. Park, Y. ...
https://doi.org/۱۰.۱۰۱۶/j.chemosphere.۲۰۱۹.۰۴.۱۹۸[۱۱] A.O. Ezzat, M.S. Ali, H.A. Al-Lohedan, Synthesis, Characterization, and ...
https://doi.org/۱۰.۱۱۵۵/۲۰۲۲/۳۳۶۸۲۹۸[۱۲] S. Bahrani, S.A. Hashemi, S.M. Mousavi, Environmental Applications of ...
https://doi.org/۱۰.۱۰۰۷/۹۷۸-۳-۰۳۰-۹۰۹۴۸-۲_۳۱[۱۳] A.Z.M. Badruddoza, Z.B.Z. Shawon, M.T. Rahman, K.W. Hao, K. ...
https://doi.org/۱۰.۱۰۱۶/j.cej.۲۰۱۳.۰۳.۱۱۴[۱۴] T.R. Bastami, S. Khaknahad, M. Malekshahi, Sonochemical versus reverse-precipitation ...
https://doi.org/۱۰.۱۰۰۷/s۱۱۳۵۶-۰۱۹-۰۷۳۶۸-۰[۱۵] M. Faraji, Recent analytical applications of magnetic nanoparticles, Nanochemistry ...
S. Chatterjee, S. Mahanty, P. Das, P. Chaudhuri, S. Das, ...
https://doi.org/۱۰.۱۰۱۶/j.cej.۲۰۱۹.۱۲۳۷۹۰[۱۷] S.M. Pourmortazavi, H. Sahebi, H. Zandavar, S. Mirsadeghi, Fabrication ...
https://doi.org/۱۰.۱۰۱۶/j.compositesb.۲۰۱۹.۱۰۷۱۳۰[۱۸] S. Lal, A. Singhal, P. Kumari, Exploring carbonaceous nanomaterials ...
https://doi.org/۱۰.۱۰۱۶/j.jwpe.۲۰۲۰.۱۰۱۲۷۶[۱۹] T. Wang, S. Ai, Y. Zhou, Z. Luo, C. ...
https://doi.org/۱۰.۱۰۱۶/j.jece.۲۰۱۸.۱۰.۰۱۴[۲۰] P. Somu, U. Kannan, S. Paul, Biomolecule functionalized magnetite ...
https://doi.org/۱۰.۱۰۰۲/jctb.۵۹۸۴[۲۱] K. Gupta, P. Joshi, R. Gusain, O.P. Khatri, Recent ...
https://doi.org/۱۰.۱۰۱۶/j.ccr.۲۰۲۱.۲۱۴۱۰۰[۲۲] J. Garvasis, A.R. Prasad, K. Shamsheera, T.N. Roy, A. ...
https://doi.org/۱۰.۱۰۱۶/j.materresbull.۲۰۲۲.۱۱۲۱۳۰[۲۳] M. Najafi, T.R. Bastami, N. Binesh, A. Ayati, S. ...
https://doi.org/۱۰.۱۰۱۶/j.jiec.۲۰۲۲.۰۹.۰۳۹[۲۴] R.K. Gautam, S. Soni, M.C. Chattopadhyaya, Functionalized magnetic nanoparticles ...
https://doi.org/۱۰.۴۰۱۸/۹۷۸-۱-۴۶۶۶-۶۳۶۳-۳.ch۰۲۴[۲۵] A.M. Abu-Dief, S.M. Abdel-Fatah, Development and functionalization of magnetic ...
https://doi.org/۱۰.۱۰۱۶/j.bjbas.۲۰۱۷.۰۵.۰۰۸[۲۶] V. Singh, K. Rakshit, S. Rathee, S. Angmo, S. ...
https://doi.org/۱۰.۱۰۱۶/j.biortech.۲۰۱۶.۰۵.۰۰۲[۲۷] A. Soozanipour, A. Taheri-Kafrani, M. Barkhori, M. Nasrollahzadeh, Preparation ...
https://doi.org/۱۰.۱۰۱۶/j.jcis.۲۰۱۸.۱۰.۰۵۳[۲۸] S. Chaudhary, P. Sharma, D. Singh, A. Umar, R. ...
https://doi.org/۱۰.۱۰۲۱/acssuschemeng.۷b۰۱۰۴۱[۲۹] K. Ahmouda, Green synthesis and characterization of iron oxide ...
S.A. Elfeky, S.E. Mahmoud, A.F. Youssef, Applications of CTAB modified ...
https://doi.org/۱۰.۱۰۱۶/j.jare.۲۰۱۷.۰۶.۰۰۲[۳۱] J. You, L. Wang, Y. Zhao, W. Bao, A ...
https://doi.org/۱۰.۱۰۱۶/j.jclepro.۲۰۲۰.۱۲۴۶۶۸[۳۲] M.S. Samuel, E. Selvarajan, R. Chidambaram, H. Patel, K. ...
https://doi.org/۱۰.۱۰۱۶/j.chemosphere.۲۰۲۱.۱۳۱۳۶۸[۳۳] R. Saxena, M. Saxena, A. Lochab, Recent progress in ...
https://doi.org/۱۰.۱۰۰۲/slct.۲۰۱۹۰۳۵۴۲[۳۴] M. Sajid, Magnetic ionic liquids in analytical sample preparation: ...
https://doi.org/۱۰.۱۰۱۶/j.trac.۲۰۱۹.۰۲.۰۰۷[۳۵] S.H. Araghi, M.H. Entezari, Amino-functionalized silica magnetite nanoparticles for ...
https://doi.org/۱۰.۱۰۱۶/j.apsusc.۲۰۱۵.۰۱.۲۱۱[۳۶] N. Li, H.-F. Zhang, J. Chen, Y.-P. Shi, One-step ...
https://doi.org/۱۰.۱۲۴۶/bcsj.۲۰۱۸۰۰۹۴[۳۷] A.W. Burton, K. Ong, T. Rea, I.Y. Chan, On ...
https://doi.org/۱۰.۱۰۱۶/j.micromeso.۲۰۰۸.۰۶.۰۱۰[۳۸] X. Lu, J. Duan, Y. Huang, Adsorption of Cr ...
J. Hu, G. Chen, I.M. Lo, Removal and recovery of ...
https://doi.org/۱۰.۱۰۱۶/j.watres.۲۰۰۵.۰۵.۰۵۱[۴۰] W. Jiang, M. Pelaez, D.D. Dionysiou, M.H. Entezari, D. ...
https://doi.org/۱۰.۱۰۱۶/j.cej.۲۰۱۳.۰۲.۰۴۹[۴۱] A.M. Elgamal, N.A. Abd El-Ghany, G.R. Saad, Synthesis and ...
https://doi.org/۱۰.۱۰۱۶/j.ijbiomac.۲۰۲۲.۱۲.۱۱۰[۴۲] V. Ramya, D. Murugan, C. Lajapathirai, S. Meenatchisundaram, S. ...
https://doi.org/۱۰.۱۰۱۶/j.jclepro.۲۰۲۲.۱۳۲۸۵۳[۴۳] M. Imran, Z.U.H. Khan, M.M. Iqbal, J. Iqbal, N.S. ...
نمایش کامل مراجع