Two-dimensional delay line SAW based Hydrogen gas sensor for leakage detection in pipelines using Palladium nano particles

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 27

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJND-14-3_008

تاریخ نمایه سازی: 5 اسفند 1402

Abstract:

The world is witnessing a transformative shift towards sustainable energy solutions, and hydrogen gas has emerged as a promising clean energy carrier with the potential to revolutionize our energy landscape. As hydrogen pipelines become an integral part of the infrastructure supporting this green energy transition, ensuring their safety and reliability becomes paramount. Among the critical challenges faced by hydrogen pipeline operators, one of the most pressing is the detection of gas leakage. Detecting hydrogen gas leaks in pipelines is not only essential for maintaining the integrity of the infrastructure but also for preventing potential safety hazards and minimizing environmental impacts. This paper presents a design to detect such leakages using two-dimensional delay line SAW based hydrogen gas sensor using COMSOL Multiphysics. The sensor is constructed with langasite piezoelectric substrate, IDT is built with aluminium and ZnO is used for sensing layer. To enhance the sensitivity of the device palladium nano particles are added to the sensor with extra conductive layer placed in the sensing layer. The proposed sensor is analysed for surface deflection, electric potential with as well as without hydrogen gas by varying the width of conductive layer from ۱۰۰۰μm to ۳۰۰۰μm.In addition to this, sensor is also tested for hydrogen environment with the concentration of gas ranging from ۱۰ppm to ۱۰۰ppm and sensitivity of the sensor is analysed. The simulated results relieved that the deflection of the sensor decreases with hydrogen gas and surface electric potential increases at all the widths of conductive layer. The conductive layer with width of ۳۰۰۰ μm achieved maximum deflection, electric potential and high sensitivity due to amplification provided by the conductive layer and nano particles. With hydrogen gas the sensor experiences a positive frequency shift due to change in electro acoustic effect on the sensing layer. But the sensor exhibits linearity with deflection and frequency with rise in the concentration of hydrogen gas. Further an electric equivalent model of the SAW sensor is designed using Colpitts oscillator to generate the operating frequency of SAW sensor. Electronic equivalent model is simulated using NI Multisim. The device has shown close approximation of theoretical frequency, simulated frequencies.

Authors

Harathi Nimmala

Department of Electronics and Instrumentation Engineering, Annamalai University, Chidambaram, ۶۰۸۰۰۱,Tamilnadu, India.

Kavitha Subramanian

Department of Electronics and Instrumentation Engineering, Annamalai University, Chidambaram, ۶۰۸۰۰۱,Tamilnadu, India.

Argha Sarkar

School of Computer Science & Engineering, REVA University, Bengaluru, ۵۶۰۰۶۴, Karnataka, India.

Rajakumar Selvarajan

Department of Manufacturing Engineering, Annamalai University, Chidambaram, ۶۰۸۰۰۱, Tamilnadu, India.

Saravanan Kothalamuthu

UGC-DAE CSR Kalpakkam, Kokilamedu, Chidambaram, ۶۰۳۱۰۴, Tamilnadu, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • ۱ Accidentology Involving Hydrogen., (۲۰۰۹), Ministery of Ecology, Energy, Sustainable ...
  • ۲ Sarkar A., Venkataramana P., Harathi N., Jyothsna T., Teja, ...
  • https://doi.org/۱۰.۲۵۰۴۶/aj۰۵۰۱۳۳۳ Arabshahi S., Dousti M., Hassan F. F., (۲۰۱۲), Simulation ...
  • ۴ Ippolito S., Ponzoni A., Kalantar-Zadeh K., Wlodarski W., Comini ...
  • https://doi.org/۱۰.۱۰۱۶/j.snb.۲۰۰۵.۱۲.۰۵۰۵ Awang Z., (۲۰۱۴), Gas sensors: A review. Sens. Transducers. ...
  • ۶ Suma V., Shekar R. R., Akshay K. A., (۲۰۱۹), ...
  • https://doi.org/۱۰.۱۱۰۹/ICECA.۲۰۱۹.۸۸۲۲۰۵۵۷ Karapetya G. Y., Kaydashev V. E., Kutepo M. E., ...
  • https://doi.org/۱۰.۱۰۰۷/s۰۰۳۳۹-۰۲۰-۰۳۹۸۰-x۸ Priya R., Banu T., Venkatesan G., Pandiyarajan D., Haresh ...
  • https://doi.org/۱۰.۱۳۰۷۴/jent.۲۰۱۵.۱۲.۱۵۴۱۷۱۹ Kumar M., Bhadu D., (۲۰۲۱), Design performance and frequency ...
  • https://doi.org/۱۰.۱۰۰۷/s۴۲۴۱۷-۰۲۰-۰۰۲۵۷-۸۱۰ Guz Ł., (۲۰۱۹), Technical aspects of SAW gas sensors ...
  • https://doi.org/۱۰.۱۰۵۱/matecconf/۲۰۱۹۲۵۲۰۶۰۰۷۱۱ Gupta A., Kumar P., Pandey S., (۲۰۱۷), Analysis of ...
  • https://doi.org/۱۰.۱۱۰۹/ICOEI.۲۰۱۷.۸۳۰۰۹۲۴۱۲ Garg A., Almáši M., Saini R., Paul D. R., ...
  • https://doi.org/۱۰.۱۰۰۷/s۱۱۳۵۶-۰۲۲-۲۱۲۹۰-y۱۳ Luo W., Fu Q., Deng J., Ya, G., Zhou ...
  • https://doi.org/۱۰.۱۰۱۶/j.snb.۲۰۱۲.۱۰.۱۱۹۱۴ Khan S., Lehana P., Arya S., (۲۰۱۷), Fabrication and ...
  • https://doi.org/۱۰.۱۱۶۶/sl.۲۰۱۷.۳۷۹۳۱۵ Harathi N., Subramanian K., Sarkar A., Selvarajan R., (۲۰۲۲), ...
  • https://doi.org/۱۰.۱۱۴۲/S۱۷۹۳۹۸۴۴۲۲۵۰۰۰۹X۱۶ Ahmad Asri M. I., Hasan M. N., Md Yunos ...
  • https://doi.org/۱۰.۱۰۰۷/۹۷۸-۹۸۱-۱۹-۳۹۲۳-۵_۵۳۱۷ Tiwary A., Rout S. S., Behera B., (۲۰۲۲), Design ...
  • https://doi.org/۱۰.۱۰۰۷/s۴۲۳۴۱-۰۲۲-۰۰۳۹۲-x۱۸ Kumar A., Prajesh R., (۲۰۲۲), The potential of acoustic ...
  • https://doi.org/۱۰.۱۰۱۶/j.sna.۲۰۲۲.۱۱۳۴۹۸۱۹ Liu X., Jin C., Zhou T., (۲۰۲۳), A study ...
  • https://doi.org/۱۰.۳۳۹۰/s۲۳۰۵۲۴۸۷۲۰ Jeon J. Y., Park S. J., Ha T. J., ...
  • https://doi.org/۱۰.۱۰۲۱/acsami.۱c۰۳۲۸۳۲۱ Verma P., Maheshwari S. K., (۲۰۱۹), Applications of silver ...
  • ۲۲ Ahmad Asri M. I., Hasan M. N., Md Yunos ...
  • https://doi.org/۱۰.۳۳۹۰/s۱۷۰۱۰۰۷۴۲۳ Devkota J., Kim K. J., Ohodnicki P. R., Culp ...
  • https://doi.org/۱۰.۱۰۳۹/C۷NR۰۹۵۳۶H۲۴ Mohammad A., Sultan S. M., Tan M. L. P., ...
  • https://doi.org/۱۰.۱۱۰۹/ICSE۵۶۰۰۴.۲۰۲۲.۹۸۶۳۰۹۸۲۵ Mohanan A. A., Islam M. S., Ali S. H. ...
  • https://doi.org/۱۰.۳۳۹۰/s۱۳۰۲۰۲۱۶۴۲۶ Ahmadi F., Hassani C., Korman M., Rahaman M., (۲۰۰۴), ...
  • ۲۷ Durdaut P., Kittmann A., Rubiol E., Friedt J. M., ...
  • ۲۸ Verma P., Maheshwari S. K., (۲۰۱۹), Applications of Silver ...
  • ۲۹ Harathi N., Sarkar A, (۲۰۲۱), TiO۲ based surface acoustic ...
  • ۳۰ Sadeghi B., (۲۰۱۸), Controlled growth and characterization Ag/ZnO nanotetrapods ...
  • نمایش کامل مراجع