Bernoulli Wavelet Method for Numerical Solution of Fokker-Planck-Kolmogorov Time Fractional Differential Equations

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 39

This Paper With 21 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CSE-2-1_012

تاریخ نمایه سازی: 5 اسفند 1402

Abstract:

The purpose of this paper is to present a wavelet method for numerical solutions Fokker-Planck-Kolmogorov time-fractional differential equations with initial and boundary conditions. The authors was employed the Bernoulli wavelets for the solution of Fokker-Planck-Kolmogorov time-fractional differential equation. We calculated the Bernoulli wavelet fractional integral operation matrix of the fractional order and the upper error boundary for the Riemann‐Levilleville fractional integral operation matrix and the Bernoulli wavelet fractional integral operation matrix. The Fokker-Planck-Kolmogorov time-fractional differential equation is converted to the linear equation using the Bernoulli wavelet operation matrix in this technique. This method has the advantage of being simple to solve. The simulation was carried out using MATLAB software. Finally, the proposed strategy was used to solve certain problems. the Bernoulli wavelet and Bernoulli fraction of the fractional order, the Bernoulli polynomial, and the Bernoulli fractional functions were introduced. Explaining how functions are approximated by fractional-order Bernoulli wavelets as well as fractional-order Bernoulli functions. The Bernoulli wavelet fractional integral operational matrix was used to solve the Fokker-Planck-Kolmogorov fractional differential equations. The results for some numerical examples are documented in table and graph form to elaborate on the efficiency and precision of the suggested method. The results revealed that the suggested numerical method is highly accurate and effective when used to Fokker-Planck-Kolmogorov time fraction differential equations

Authors

Shaban Mohammadi

Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Semnan, Iran

S .Reza Hejazi

Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Semnan, Iran.

Hossein Seifi

Bachelor of Mathematics, Sarvelayat Education Organization, Chakaneh, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New ...
  • K.S. Miller, B. Ross, An introduction to the fractional calculus ...
  • R.L. Bagley, P.J. Torvik, Fractional calculus in the transient analysis ...
  • E. Keshavarz, Y. Ordokhani, M. Razzaghi, Bernoulli wavelet operational matrix ...
  • G. Arfken, Mathematical methods for physicists, Third eddition, Academic Press, ...
  • S. Yuzbasi, Numerical solutions of fractional Riccati type differential equations ...
  • H. Jafari, S.A. Yousefi, M.A. Firoozjaee, S. Momani, C.M. Khalique, ...
  • R.T. Baillie, Fractional integration in econometrics, Journal of Econometrics, ۷۳ ...
  • F. Mainardi, Fractional calculus”some basic problems in continuum and statistical ...
  • Y.A. Rossikhin, M.V. Shitikova, Application of fractional calculus to dynamic ...
  • T.S. Chew, Fractional dynamic of interfaces between soft-nanoparticales and rough ...
  • L. Gaul, P. Klein, S. Kemple, Damping description involving fractional ...
  • L. Suarez, A. Shokooh, An eigenvector erpansion method for the ...
  • I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, ...
  • S. Momani, K. AlKhaled, Numerical solutions for systems of Fractional ...
  • M. Meerschaert, C. Tadjeran, Finite difference approximations for two- sided ...
  • Z. Odibat, N. Shawaghfeh, Generalized Taylor’s formula, Appl. Math. Comput, ...
  • A. Arikoglu, I. Ozkol, Solution of fractional integro-differential equations by ...
  • I. Hashim,O .Abdulaziz, S. Momani, Homotopy analysis method for fractional ...
  • M. Razzaghi, G. Elnagar, Linear quadratic optional control problems via ...
  • H. Marzban, M. Razzaghi, Hybrid Fractions Approach for Linearly constrained ...
  • M. Razzaghi, M. Razzaghi, Instabilities in the solution of heat ...
  • Hejazi, S.R., Habibi, N., Dastranj,E., Lashkarian, E. (۲۰۲۰), “Numerical approximations ...
  • B. F. Spencer Jr. and L. A. Bergman, On the ...
  • C. Floris, "Numeric Solution of the Fokker-Planck-Kolmogorov Equation," Engineering, Vol. ...
  • M. Zorzano, H. Mais, L. Vazquez, Numerical solution of two ...
  • J. Bect, H. Baili, G. Fleury, Generalized Fokker-Planck equation for ...
  • P. Rahimkhani, Y. Ordokhani, E. Babolian, Fractional-Order Bernoulli Wavelets and ...
  • نمایش کامل مراجع